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All the special functions are fractional differintegrals of
elementary functions

Virginia Kiryakova†
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria
Instituto per la Ricerca di Base, Monteroduni, Italy

Received 21 January 1997

Abstract. In this survey we discuss a unified approach to the generalized hypergeometric
functions based on ageneralized fractional calculusdeveloped in the monography by Kiryakova.
This generalization of the classical theory of the operators of integration and differentiation of
fractional order deals with integral (differintegral) operators involvingMeijer’s G- andFox’s H-
functionsas kernel functions. Their theory is fully developed and illustrated by various special
cases and applications in different areas of the applicable analysis.

Usually, the special functions of mathematical physics are defined by means of power series
representations. However, some alternative representations can be used as their definitions.
Let us mention the well knownPoisson integralsfor the Bessel functions and the analytical
continuation of the Gauss hypergeometric function via theEuler integral formula. TheRodrigues
differential formulae, involving repeated or fractional differentiation are also used as definitions
of the classical orthogonal polynomials and their generalizations. As to the other special
functions (most of them beingpFq - andp9q -functions), such representations are less popular
and even unknown in the general case. There exist various integral and differential formulae, but,
unfortunately, they are quite peculiar for each corresponding special function and scattered in
the literature without any common idea to relate them. Here, all thegeneralized hypergeometric
functionsare proved to be generalized fractional integrals or derivatives of three basic elementary
functions. On this base, they are classified in three specific classes and several new integral and
differential representations are found.

1. Introduction

The generalized fractional calculus developed in [11] is based on the notion ofgeneralized
operators of fractional integrationof Riemann–Liouville type

If (x) = xδ
∫ 1

0
8(σ)σ γ f (xσ) dσ (1.1)

(see Kalla [6]), where8(σ) is an arbitrary elementary or special kernel function. However,
in order to develop a meaningful detailed theory with practical applications, we choose the
kernel functions as suitable special cases of theMeijer’s G-functionsandFox’s H-functions.

Definition 1.1. (see [14, 18]) By a Fox’s H-function we mean the generalized
hypergeometric function defined by means of the contour integral

Hm,n
p,q (σ ) = Hm,n

p,q

[
σ

∣∣∣∣ (a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

]
† E-mail address: virginia@math.acad.bg, virginia@bgearn.acad.bg
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= Hm,n
p,q

[
σ

∣∣∣∣ (aj , Aj )p1(bk, Bk)
q

1

]
= 1

2π i

∫
L
Hm,np,q (s)σ

s ds σ 6= 0 (1.2)

where the integrand in (1.2) has the form

Hm,np,q (s) =
∏m
k=10(bk − Bks)

∏n
j=10(1− aj + Ajs)∏q

k=m+10(1− bk + Bks)
∏p

j=n+10(aj − Ajs)
andL is a suitable contour inC; the orders(m, n;p, q) are non-negative integers such that
06 m 6 q, 06 n 6 q; the parametersAj , j = 1, . . . , p andBk, k = 1, . . . , q are positive
andaj , j = 1, . . . , p, bk, k = 1, . . . , q, are arbitrary complex numbers such that

Aj(bk + l) 6= Bk(aj − l′ − 1) l, l′ = 0, 1, 2, . . . , j = 1, . . . , p, k = 1, . . . , q.

In particular, when allAj = Bk = 1, we obtain the so-calledMeijer’s G-function [5,
vol 1]),

Hm,n
p,q

[
σ

∣∣∣∣ (aj , 1)p1
(bk, 1)q1

]
= Gm,n

p,q

[
σ

∣∣∣∣ (aj )p1(bk)
q

1

]
(1.3)

namely,

Gm,n
p,q

[
σ

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

]
= 1

2π i

∫
L

∏m
k=10(bk − s)

∏n
j=10(1− aj + s)∏q

k=m+10(1− bk + s)
∏p

j=n+10(aj − s)
σ s ds. (1.4)

In section 2 we define our generalized fractional integrals and derivatives using as
kernel functions peculiar cases of the above special functions withm = p = q, n = 0. This
choice of the kernel function8(σ) ensures a decomposition of these operators (called
also multiple Erdélyi–Kober operators) into products of commuting classical Erdélyi–
Kober (E–K) operators. Thus, complicated multiple integrals or differintegral expressions
can be represented alternatively by means of single integrals involving special functions.
The beauty and succinctness of the notation and properties of these functions allow the
development of a full chain of operational rules, mapping properties and convolutional
structure of the generalized fractional integrals as well as an appropriate explicit definition
of the corresponding generalized derivatives. On the other hand, the frequent appearance
of compositions of classical Riemann–Liouville and Erdélyi–Kober fractional operators in
various problems of applied analysis gives the key to the great number of applications and
known special cases of our generalized fractional differintegrals.

Section 3 deals with the generalized hypergeometric functionspFq(x) being also special
cases of the Meijer’sG-functions (see [5, 14]):

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∏q

j=10(bj )∏p

j=10(aj )
G

1,p
p,q+1

[
−x
∣∣∣∣ 1− a1, . . . ,1− ap
0, 1− b1, . . . ,1− bq

]
. (1.5)

Definition 1.2. By a generalized hypergeometric function (GHF)pFq(x) we mean the sum
of the GHF series

pFq(a1, . . . , ap; b1, . . . , bq; x) = pFq((ai)
p

1 ; (bj )q1; x) =
∞∑
k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k
· x

k

k!

where(a)0 = 1, (a)k = 0(a + k)
0(a)

(1.6)

in the domain of its convergence:� = {|x| < ∞} for p 6 q and� = {|x| < 1} for
p = q + 1, or its analytical continuation in{|x| > 1, | arg(1− x)| < π} in the latter case.
One may considerx also as a real variablex ∈ [0,∞).
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We separate thepFq-functions into three classes depending on whetherp < q, p = q
or p = q + 1 and represent the functions of each class as generalized fractional integrals or
derivatives of three basic elementary functions:

cosq−p+1(x) (if p < q) xα expx (if p = q) xα(1− x)β (if p = q + 1). (1.7)

The above-mentioned representations lead to several new integral and differential formulae
for the pFq-functions and allow their study in a unified way. Many interesting particular
cases are mentioned.

In section 4 we continue the same approach to the so-called Wright’s generalized
hypergeometric functions ([18, 19])

p9q

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)
; x
]
=
∞∑
k=0

0(a1+ kA1) . . . 0(ap + kAp)
0(b1+ kB1) . . . 0(bq + kBq)

xk

k!

= H 1,p
p,q+1

[
−x
∣∣∣∣ (1− a1, A1), . . . , (1− ap,Ap)
(0, 1), (1− b1, B1), . . . , (1− bq, Bq)

]
. (1.8)

Naturally,

p9q

[
(a1, 1), . . . , (ap, 1)
(b1, 1), . . . , (bq, 1)

; x
]
=
∏q

i=10(bi)∏p

j=10(aj )
pFq(a1, . . . , ap; b1, . . . , bq; x). (1.9)

The results for the special functions (1.9) are essentially new and are published for the
first time.

2. Generalized fractional calculus

We introduce the following generalizations of the Riemann–Liouville (R–L) fractional
integrals of orderδ > 0:

Rδf (x) = 1

0(δ)

∫ x

0
(x − τ)δ−1f (τ) dτ = xδ

0(δ)

∫ 1

0
(1− σ)δ−1f (xσ) dσ (2.1)

having the form of operators (1.1).

Definition 2.1. Let m > 1 be integer,β > 0, γ1, . . . , γm and δ1 > 0, . . . , δm > 0 be
arbitrary real numbers. By a generalized (multiple,m-tuple) E–K operator of integration of
multiorderδ = (δ1, . . . , δm) we mean an integral operator

I
(γk),(δk)

β,m f (x) =
∫ 1

0
Gm,0
m,m

[
σ

∣∣∣∣ (γk + δk)m1(δk)
m
1

]
f (xσ 1/β) dσ. (2.2)

Then, each operator of the form

Rf (x) = xβδ0I
(γk),(δk)

β,m f (x) with arbitraryδ0 > 0 (2.3)

is said to be ageneralized (m-tuple) operator of fraction integration of R–L type, or briefly
a generalized R–L fractional integral.

Generalizing further the operators of fractional calculus, in [8, 11] we consider also
operators involving Fox’sH -functions instead of theG-functions in (2.2) and (2.3). They are
named in the same way, namelygeneralized (multiple) E–K operators (fractional integrals):

I
(γk),(δk)

(βk),m
f (x) =



∫ 1

0
Hm,0
m,m

[
σ

∣∣∣∣ (γk + δk + 1− (1/βk), (1/βk))m1
(γk + 1− (1/βk), (1/βk))m1

]
f (xσ) dσ

if
m∑
k=1

δk > 0

f (x) if δ1 = δ2 = · · · = δm = 0.

(2.4)
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Thus, along with the multiorder of integration(δ1, . . . , δm) and the multiweight
(γ1, . . . , γm), we introduce also a multiparameter(β1 > 0, . . . , βm > 0) (different βk ’s)
instead of the sameβ > 0 in the case with kernelG-function. Note that due to the relation
generalizing (1.3),

Hm,n
p,q

[
σ

∣∣∣∣ (a1, 1/β), . . . , (ap, 1/β)
(b1, 1/β), . . . , (bq, 1/β)

]
= βGm,n

p,q

[
σβ
∣∣∣∣ (aj )p1(bk)

q

1

]
β > 0 (2.5)

operator (2.4) involving aH -function reduces to its simpler form (2.2), viz

for β1 = β2 = · · · = βm = β > 0 I
(γk),(δk)

(β,β,...,β),m = I (γk),(δk)β,m . (2.6)

Now let us define generalizations of the classical R–L derivatives of fractional order
δ > 0:

Dδf (x) =


dδ

dxδ
f (x) = f (δ)(x) for integerδ,

dη

dxη
Rη−δf (x) for non-integerδ with η = [δ] + 1

(2.7)

corresponding to generalized fractional integrals (2.2) and (2.4).

Definition 2.2. With the same parameters as in definition 2.1 and the integers

ηk =
{
δk if δk is integer

[δk] + 1 if δk is non-integer
k = 1, . . . , m (2.8)

we introduce the auxiliary differential operator

Dη =
[ m∏
r=1

ηr∏
j=1

(
1

βr
x

d

dx
+ γr + j

)]
. (2.9)

Then, the multiple (m-tuple) E–K fractional derivatives of multiorderδ = (δ1 > 0, . . . , δm >
0) are defined by means of the differintegral operators:

D
(γk),(δk)

(βk),m
f (x) = DηI

(γk+δk),(ηk−δk)
(βk),m

f (x)

= Dη

∫ 1

0
Hm,0
m,m

[
σ

∣∣∣∣ (γk + ηk + 1− (1/βk), (1/βk))m1
(γk + 1− (1/βk), (1/βk))m1

]
f (xσ) dσ. (2.10)

In the case (2.5) of equalβk ’s we obtain simpler representations involving the Meijer’s
G-function and corresponding to generalized fractional integrals (2.2):

D
(γk),(δk)

β,m = DηI
(γk+δk),(ηk−δk)
β,m =

[ m∏
r=1

ηr∏
j=1

(
1

β
x

d

dx
+ γr + j

)]
I
(γk+δk),(ηk−δk)
β,m . (2.11)

More generally, the differintegral operators of the form

Df (x) = D(γk),(δk)

β,m x−δ0f (x) = x−δ0D
(γk−(δ0/β)),(δk)

β,m f (x) with δ0 > 0 (2.12)

are called generalized (multiple,m-tuple) fractional derivatives.

Generalized derivatives (2.11) and (2.12) are the counterparts of the generalized
fractional integrals (2.2) and (2.3).

The generalized fractional integrals and derivatives include as special cases a great
number of operators of fractional (or integer but generalized) integration and differentiation,
even in the simpler cases related to the Meijer’sG-function. We consider separately the
casesm = 1, 2 (when many generalized integration and differentiation operators introduced
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and used by various authors are included as special cases) andm > 2 (when our operators
are less known).

(i) m = 1. The kernel function of (2.2) is the elementary function

G
1,0
1,1

[
σ

∣∣∣∣ γ + δγ
]
=
{
(1− σ)δ−1σγ /0(δ) 0< σ < 1

0, σ > 1.
(2.13)

Thus, for arbitraryβ > 0, γ and δ > 0 the generalized fractional integrals (2.2) coincide
with the well known E–K operators (integrals)

I
γ,δ

β f (x) =
∫ 1

0

(1− σ)δ−1σγ

0(δ)
f (xσ 1/β) dσ = I γ,δβ,1f (x) (2.14)

widely used in the applied analysis (see e.g. [17]) and incorporating the R–L fractional
integrals (2.1) as well:Rδf (x) = xδI 0,δ

1 f (x).
For m = 1 the generalized fractional derivative (2.10), corresponding to the E–K

fractional integral (2.14), is called in [11] in E–K fractional derivative and has the
representation

D
γ,δ

β f (x) := Dγ,δ

β,1f (x) = DηI
γ+δ,η−δ
β f (x)

=
[ η∏
j=1

(
1

β
x

d

dx
+ γ + j

)]∫ 1

0

(1− σ)η−δ−1σγ+δ

0(η − δ) f (xσ 1/β) dσ. (2.15)

Symbolically, it can be written as

D
γ,δ

β f (x) := Dγ,δ

β,1f (x) = [x−γDδxγ+δf (x1/β)]x→xβ (2.15′)

whereDδ is the R–L fractional derivative (2.7), being also an E–K derivative:

Dδ =
(

d

dx

)δ
= x−δD−δ,δ1 = D0,δ

1 x−δ δ > 0.

(ii) m = 2. Then, the kernel function of (2.2) is the Gauss hypergeometric function
2F1, namely

G
2,0
2,2

[
σ

∣∣∣∣ γ1+ δ1, γ2+ δ2

γ2, γ2

]

=


σγ2(1− σ)δ1+δ2−1

0(δ1+ δ2)
2F1(γ2+ δ2− γ1, δ1; δ1+ δ2; 1− σ) for σ < 1

0 for σ > 1
(2.16)

and the operatorsI (γk),(δk)β,2 are the so-called hypergeometric fractional integrals:

Hf (x) = I (γ1,γ2),(δ1,δ2)

β,2 f (x) =
∫ 1

0

σγ2(1− σ)δ1+δ2−1

0(δ1+ δ2)
2F1(γ2+ δ2− γ1, δ1; δ1+ δ2; 1− σ)

×f (xσ 1/β) dσ (2.17)

introduced first by Love [13] and considered in different modifications by Saigo [16].
(iii) m > 2. In this case the generalized fractional integrals and derivatives have

been used mainly in their alternative, multiple integral representations, without involving
special kernel functions. This has caused a lack of suitable tools to deal with them
easily.
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In a series of papers (e.g. [3]) Dimovski introduced and studied the hyper-Bessel
differential operators of arbitrary integer orderm > 1 of the form

B = xα0
d

dx
xα1 · · · d

dx
xαm = x−β

m∏
k=1

(
x

d

dx
+ βγk

)
β > 0. (2.18)

These operators, generalizing the second-order Bessel differential operator are widely used
in the differential equations of mathematical physics (see [11, ch 3]). Dimovski developed
a detailed theory, including operational calculi, integral transforms, etc. Operators (2.18)
and their linear right inverse operatorsL, the so-called hyper-Bessel integral operators have
been shown in [11] to be generalized (m-tuple, arbitrarym > 1) fractional derivatives and
integrals of integer multi-order(δ1 = 1, . . . , δm = 1), namely

L = xβ

βm
I
(γk),(1)
β,m f (x) B = βmD(γk),(1)

β,m x−β = βm

xβ
D
(γk−1),(1)
β,m . (2.19)

A variety of useful transmutation operators, related to operators (2.18)–(2.19), such as the
Poisson–Sonine–Dimovski transforms are also examples ofm-tuple generalized fractional
integrals, for all the details see ch 3 of [11].

The multiple Dzrbashjan–Gelfond–Leontiev operators ([11, section 5.4]), are typical
examples of the more complicated generalized fractional (differ) integrals, (2.4) and (2.10)
involving Fox’sH -functions.

In [11] the generalized operators of fractional integration and differentiation have been
considered in differentfunctional spaces, such as weighted spaces of continuous, Lebesgue
integrable or analytic functions. Here we need the definition of the latter spaces only.

Definition 2.3. Let µ be arbitrary real, the variablex be real or complex, running
respectively over the interval [0,∞) or in the domain� ⊂ C, starlike with respect to
the originx = 0, and letH(�) stand for the space of analytic functions in�. Denote

Hµ(�) = {f (x) = xµf̃ (x); f̃ (x) ∈ H(�)} H0(�) := H(�). (2.20)

To study the generalized fractional integrals, we use essentially the theory of theG-
andH -functions, appearing as kernel functions of (2.2) and (2.4). To this end we refer
to the classical book [5, ch 5], and also to [14, 18, 19] or [11, appendix]. Note also that
the Gm,0

m,m- andHm,0
mm -functions have three regular singular pointsσ = 0, 1 and∞, they

vanish for |σ | > 1 and are analytic functions in the unit disk|σ | < 1. Their asymptotic
behaviour nearσ = 0, 1 is already well known (see e.g. [14] or [11, appendix]) and ensures
the correctness of definitions (2.2) and (2.4) in the above spaces under suitable conditions
on the parameters.

Operators (2.4) can be rewritten in the form

I
(γk),(δk)

(βk),m
f (x) = 1

x

∫ x

0
Hm,0
m,m

[
t

x

∣∣∣∣ (γk + δk + 1− (1/βk), (1/βk))m1
(γk + 1− (1/βk), (1/βk))m1

]
f (t) dt

and thus this can be put in the form of a convolutional-type integral transform,

I
(γk),(δk)

(βk),m
f (x) =

∫ ∞
0
k
(x
t

)
f (t)

dt

t
= (k ◦ f )(x)

where◦ denotes the Mellin convolution.
Most of the basic results for the operators of the generalized fractional calculus have

been stated in [11] separately for the cases ofG- andH -functions and for different kinds of
functional spaces. Here we expose them in the general case (2.4) only. The corresponding
reductions for the simpler case (2.2) withG-functions are easily seen (for proofs and details
see also [9]).
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Theorem 2.4. Let the conditions

γk > − µ
βk
− 1 δk > 0 k = 1, . . . , m (2.21)

be satisfied. Then, the multiple E–K operator (2.4) maps the classHµ(�) into itself,
preserving the power functions up to constant multipliers:

I
(γk),(δk)

(βk),m
{xp} = cpxp, p > α wherecp =

m∏
k=1

0(γk + (p/βk)+ 1)

0(γk + δk + (p/βk)+ 1)
. (2.22)

The image of a power series

f (x) = xµ
∞∑
n=0

anx
n = xµ(a0+ a1x + · · ·) ∈ Hµ(1R) 1R = {|x| < R}

whereR = {limn→∞ n
√|an|}−1, is given by the series

I
(γk),(δk)

(βk),m
f (x) = xµ

∞∑
n=0

{
an

m∏
k=1

0(γk + (n+ µ)/βk + 1)

0(γk + δk + (n+ µ)/βk + 1)

}
xn (2.23)

having the same radius of convergenceR > 0 and the same signs of the coefficients.
From the properties of theG- andH -functions some immediate corollaries of definitions

(2.2) and (2.4) follow.

Theorem 2.5. Suppose conditions (2.21) are satisfied. Then, inHµ(�) the following basic
operational rules of multiple E–K fractional integrals (2.4) hold:

I
(γk),(δk)

(βk),m
{λf (cx)+ ηg(cx)} = λ{I (γk),(δk)(βk),m

f }(cx)+ η{I (γk),(δk)(βk),m
g}(cx) (2.24)

(bilinearity);

I
(γ1,...,γs ,γs+1,...,γm),(0,...,0,δs+1,...,δm)

(β1,...,βm),m
f (x) = I (γs+1,...,γm)(δs+1,...,δm)

(βs+1,...,βm),m−s f (x) (2.25)

(if δ1 = δ2 = · · · = δs = 0, then the multiplicity reduces to(m− s));
I
(γk),(δk)

(βk),m
xλf (x) = xλI (γk+(λ/βk)),(δk)(βk),m

f (x), λ ∈ R (2.26)

(generalized commutability with power functions);

I
(γk),(δk)

(βk),m
I
(τj ),(αj )

(εj ),n
f (x) = I (τj ),(αj )(εj ),n

I
(γk),(δk)

(βk),m
f (x) (2.27)

(commutability of operators of form (2.4));

I
(γk),(δk)

(βk),m
I
(τj ),(αj )

(εj ),n
f (x) = I ((γk)m1 ,(τj )n1)((δk)m1 ,(αj )n1)((βk)

m
1 ,(εj )

n
1),m+n f (x) (2.28)

(compositions ofm-tuple andn-tuple integrals (2.4) are(m+ n)-tuple integrals);

I
(γk+δk),(σk)
(βk),m

I
(γk),(δk)

(βk),m
f (x) = I (γk),(σk+δk)(βk),m

f (x) if δk > 0, σk > 0, k = 1, . . . , m (2.29)

(law of indices, product rule or semigroup property);

{I (γk),(δk)(βk),m
}−1f (x) = I (γk+δk),(−δk)(βk),m

f (x) (2.30)

formal inversion formula).
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The above inversion formula follows from index law (2.29) forσk = −δk < 0,
k = 1, . . . , m and definition (2.4) for the zero multiorder of integration, since

I
(γk+δk),(−δk)
(βk),m

I
(γk),(δk)

(βk),m
f (x) = I (γk),(0,...,0)(βk),m

f (x) = f (x).
However , symbols (2.4) have not yet been defined for negative multiorders of integration
−δk < 0, k = 1, . . . , m. The problem is to propose an appropriate meaning for them
and hence to avoid the divergent integrals appearing in (2.30). The situation is the same
as in the classical case when the R–L and E–K operators of fractional orderδ > 0 are
inverted by appealing to an additional differentiation of suitable integer orderη = [δ] + 1.
Now, we make use of the following differential formula for the kernelH -function ([11],
lemma 5.1.7 or lemma B.3, appendix, for theG-function). Letηk > 0, k = 1, . . . , m be
arbitrary integers, then

Hm,0
m,m

[
t

x

∣∣∣∣ (ak, 1/βk)m1
(bk, 1/βk)m1

]
= DηH

m,0
m,m

[
t

x

∣∣∣∣ (ak + ηk, 1/βk)m1
(bk, 1/βk)m1

]
(2.31)

with the differential operatorDη being a polynomial ofx d/dx of degreeη = η1+· · ·+ηm:

Dη =
m∏
r=1

ηr∏
j=1

(
1

βr
x

d

dx
+ ar − 1+ j

)
.

This formula helps to increase the parametersak, k = 1, . . . , m, of theH -function in
the upper row by arbitrary integersηk > 0, k = 1, . . . , m, by using a suitable operatorDη.
Choosing appropriately the necessary parameters, as in definition 2.2, we can prove now
thatD(γk),(δk)

(βk),m
(2.10) is in fact a generalized fractional derivative with a linear right inverse

operatorI (γk),(δk)(βk),m
, namely

D
(γk),(δk)

(βk),m
I
(γk),(δk)

(βk),m
f (x) = f (x) f ∈ Hµ(�). (2.32)

Now we state the basic result for the generalized fractional integrals (2.2) and (2.4)
suggesting their alternative name ‘multiple (m-tuple)’ fractional integrals.

Theorem 2.6. (The composition/decomposition theorem.) Under the conditions (2.21), the
classical E–K fractional integrals of the form (2.14),I γk,δkβk

, k = 1, . . . , m, commute in
Hµ(�) and their product

I
γm,δm
βm
{I γm−1,δm−1
βm−1

. . . (I
γ1,δ1
β1

f (x))} =
[ m∏
k=1

I
γk,δk
βk

]
f (x)

=
∫ 1

0
· · ·︸︷︷︸
m

∫ 1

0

[ m∏
k=1

(1− σk)δk−1σ
γk
k

0(δk)

]
f (xσ

1/β1
1 . . . σ 1/βm

m ) dσ1 . . .dσm (2.33)

can be represented as anm-tuple E–K operator (2.4), i.e. by means of a single integral
involving theH -function:[ m∏
k=1

I
γk,δk
βk

]
f (x) = I (γk),(δk)(βk),m

f (x)

=
∫ 1

0
Hm,0
m,m

[
σ

∣∣∣∣ (γk + δk + 1− (1/βk), (1/βk))m1
(γk + 1− (1/βk), (1/βk))m1

]
f (xσ) dσ f ∈ Hµ.

(2.34)

Conversely, under the same conditions, each multiple E–K operator of form (2.4) can be
represented as a product (2.33).
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Let us note that the same proposition also holds for the generalized fractional derivatives
(2.10) and (2.11): they are products of E–K derivatives (2.15), namely:

D
(γk),(δk)

(βk),m
= Dγ1,δ1

β1
D
γ2,δ2
β2

. . . D
γm,δm
βm

. (2.35)

Combining (2.30), (2.32), (2.34) and (2.35), we can make the next step in clarifying
the structure of a great number of operators—generalized or classical, fractional or integer-
order integrations, differentiations or differintegrations. Namely, in [11] we have introduced
a unified theory based on the common notion ‘generalized fractional differintegrals’.
By now, operatorsI (γk),(δk)(βk),m

with all δk > 0, k = 1, . . . , m, have been considered as
(fractional) integrals while those with allδk < 0, k = 1, . . . , m, have been undertaken
as formal denotations for the generalized fractional derivatives (cf (2.30) and (2.32)):

I
(γ ′k+δ′k),(−δ′k)
(βk),m

= D
(γ ′k),(δ

′
k)

(βk),m
, i.e. I (γk),(δk)(βk),m

= D
(γk+δk),(−δk)
(βk),m

. Now, having the decomposition

theorem in mind, we may consider both symbolsI (γk),(δk)(βk),m
and D(γk),(δk)

(βk),m
as generalized

fractional differintegrals. If not all of the components of multiorder of ‘differintegration’
δ = (δ1, . . . , δm) are of the same sign, we simply interpret them as ‘mixed’ products
of E–K fractional integrals and derivatives. For example, ifδ1 < 0, . . . , δs < 0,
δs+1 = · · · = δs+j = 0, δs+j+1 > 0, . . . , δm > 0, then

I
(γk),(δk)

(βk),m
:= D(γ1+δ1,...,γs+δs ),(−δ1,...,−δs )

(β1,...,βs ),s
I
(γs+j+1,...,γm),(δs+j+1,...,δm)

(βs+j+1,...,βm),m−s−j

=
s∏
i=1

D
γi+δi ,−δi
βi

m∏
k=s+j+1

I
γk,δk
βk

(2.36)

is a (m− j)-tuple fractional differintegral.
Theorem 2.6 gives the key to the numerous applications of the generalized fractional

calculus operators. Some of them, especially those relevant to the theory of the special
functions, are briefly mentioned in the next two sections.

3. Representations of the generalized hypergeometric functionspFq

In [10, 11] we have proposed a unified approach to the generalized hypergeometric functions
(1.6) and derived new or newly written integral, differential and differintegral representations
of these special functions by means of the generalized fractional calculus. A suitable
classification of thepFq-functions has also been introduced. The idea is based on the
following simple facts: (i) most of the special functions of mathematical physics are nothing
but modifications of the GHFspFq ; (ii) eachpFq-function can be represented as an E–K
fractional differintegral of ap−1Fq−1-function (see (3.1)); (iii) a finite number (q) of steps
(ii) leads to one of the basic GHFs0Fq−p (for q − p = 1, Bessel function),1F1 (confluent
HF) and2F1 (Gauss HF); (iv) the above three basic GHFs can be considered as fractional
differintegrals of the three elementary functions (1.7), depending on whetherp < q, p = q
or p = q + 1; (v) the compositions of the E–K operators arising in (iii) give generalized
(q-tuple) fractional integrals or derivatives, according to theorem 2.6. Thus, we obtain the
following general result.

Proposition 3.1. All the generalized hypergeometric functionspFq can be considered as
generalized (q-tuple) fractional differintegrals (2.2), (2.3), (2.10) and (2.12) of one of the
elementary functions (1.7), depending on whetherp < q, p = q, p = q + 1.

To establish the above proposition we need the following basic lemma.
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Lemma 3.2. ([1, 12]) Let |x| <∞ (|x| < 1 for p = q + 1), then

[0(ap)/0(bq)] pFq(a1, . . . , ap; b1, . . . , bq; x)

=
{
I
ap−1,bq−ap
1,1 {p−1Fq−1(a1, . . . , ap−1; b1, . . . , bq−1; x)} if bq > ap

D
bq−1,ap−bq
1,1 {p−1Fq−1(a1, . . . , ap−1; b1, . . . , bq−1; x)} if bq < ap.

(3.1)

The three casesp < q, p = q, p = q + 1 are to be considered separately, the first of
them being more complicated and involving some auxiliary definitions and results.

First case:p < q

Definition 3.3. In [2] Delerue introduced a generalization of the Bessel functionJν(x) for
a multi-indexν = (ν1, . . . , νm), m > 1:

J (m)ν1,...,νm
(x) = (x/m+ 1)ν1+···+νm

0(ν1+ 1) . . . 0(νm + 1)
0Fm((νk + 1)m1 ;−(x/m+ 1)m+1) (3.2)

referred to as a hyper-Bessel function of orderm. As a special case, the so-called
(generalized) cosine function of order(m+ 1) follows,

cosm+1(x) = 0Fm

((
k

m+ 1

)m
1

;−(x/m+ 1)m+1

)
=
∞∑
k=0

(−1)kxk(m+1)

(k(m+ 1))!
(3.3)

generalizing the elementary cosine function cosx = cos2(x), m = 1. For more details on
(3.2) and (3.3), see [11, appendix; 5, vol 3; 14].

In [4] Dimovski and Kiryakova proved a generalization of the Poisson integral
representation of the Bessel function

Jν(x) = z√
π

(x/2)ν

0
(
ν + 1

2

) ∫ 1

0
(1− t2)ν− 1

2 cosxt dt ν > −1

2
(3.4)

based on the Poisson–Dimovski transformation (see [11, ch 3]). In terms of the generalized
fractional calculus,G- andpFq-functions, the generalized Poisson integral can be written
in the modified form ([11], theorem 4.1.1, corollary 4.1.4):

0Fm((bk)
m
1 ;−x) = cI (k/(m+1)−1),(bk−k/(m+1))

1,m {cosm+1((m+ 1)x1/(m+1))}
= c

∫ 1

0
Gm,0
m,m

[
σ

∣∣∣∣ (bk)
m
1

(k/(m+ 1))m1

]
σ−1 cosm+1((m+ 1)(xσ )1/(m+1)) dσ (3.5)

wherec = √(m+ 1)/(2π)m
∏m
j=10(bj ) and the conditionbk > k/(m+1), k = 1, . . . , m is

supposed. Otherwise, if some of thebk ’s does not satisfy this condition, the corresponding
component in the generalized fractional differintegral should be considered as an E–K
derivative (2.15) (see [11, theorem 4.1.6]). As an illustration, ifbk := νk+1= k/(m+1)−ηk
with integersηk > 0, k = 1, . . . , m, then (3.5) turns into a purely differential expression
for the ‘spherical’ hyper-Bessel functions (3.2) ([11, (4.1.42)]), reducible in the casem = 1
to the spherical Bessel functions (see e.g. [12])

J−η− 1
2
(x) = (2x)η+

1
2√

π

dη

(dx2)η

{cosx

x

}
η = 0, 1, 2 . . . . (3.6)

Observe now that byp steps (3.1), apFq-function,p < q can be reduced to a hyper-
Bessel function, i.e. to a0Fq−p-function:

pFq((ak)
p

1 ; (bl)q1; x) =
[ p∏
j=1

0(bq−p+j )
0(aj )

]
I
(ak−1),(bq−p+k−ak)
1,p {0Fq−p((bl)q−p1 ; x)}. (3.7)
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This intermediate differintegral relation combined with (3.5) gives the following
particular form of proposition 3.1 in the casep < q.

Theorem 3.4. EachpFq-function,p < q is a generalizedq-tuple fractional (differ) integral
of cosq−p+1(x), namely:

pFq(a1, . . . , ap; b1, . . . , bq;−x) = AI(γk),(δk)1,q {cosq−p+1((q − p + 1)x1/(q−p+1))} (3.8)

with A = √q − p + 1/(2π)q−p[
∏q

j=10(bj )/
∏p

i=10(ai)] and parametersγk, δk:

γk =


k

q − p + 1
− 1

ak−q+p − 1
δk =

 bk −
k

q − p + 1
for k = 1, . . . , q − p

bk − ak−q+p for k = q − p + 1, . . . , q.
(3.9)

If the conditions

bk >
k

q − p + 1
, k = 1, . . . , q − p bq−p+k > ak > 0, k = 1, . . . , p (3.10)

are satisfied, then relation (3.8) gives a Poisson-type integral representation:

pFq(a1, . . . , ap; b1, . . . , bq;−x) = A
∫ 1

0
Gq,0
q,q

[
σ

∣∣∣∣ (bk)
q

k=1

(k/(q − p + 1))q−pk=1 , (ak−q+p)
q

k=q−p+1

]
×σ−1 cosq−p+1[(q − p + 1)(xσ )1/(q−p+1)] dσ

= A
∫ 1

0
· · ·
(q)

∫ 1

0

q−p∏
k=1

[
(1− tk)bk−(k/(q−p+1))−1

0(bk − (k/(q − p + 1)))
t
(k/(q−p+1))−1
k

]
×

q∏
k=q−p+1

[
(1− tk)bk−ak−q+p−1

0(bk − ak−q+p) t
ak−q+p−1
k

]
× cosq−p+1[(q − p + 1)(xt1 . . . tq)

1/(q−p+1)] dt1 . . .dtq . (3.11)

If (3.10) are not true at least for one of the indicesk, thenI (γk),(δk)1,q in (3.8) is considered as
a generalized fractional derivative.

Relation (3.8), including integral representations (3.5) and (3.11) and their differintegral
analogues, expresses thepFq-functions,p < q, as fractional differintegrals (integrals or
derivatives) of the generalized cosine function. This fact generalizes the well known
representations like (3.4) and (3.6) of the Bessel function via the cosine and thus, suggests
the nameBessel type GHFsfor the functionspFq with p < q. The Bessel function itself is
the simplest special function of thisclass.

Second case:p = q
Applying relation (3.1) to a functionpFp consequently(p − 1) times, we reach a1F1-
function which on its side is representable as an E–K operator of the elementary function
xα expx:

0(a)

0(b)
1F1(a; b; x) = x1−aI 0,b−a

1 {xa−1 ex} =
{
I
a−1,b−a
1 {ex} if b > a

D
b−1,a−b
1 {ex} if b < a.

(3.12)

Thus, combining (3.1) and (3.12), byp steps we obtain the form of proposition 3.1 in
this case.
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Theorem 3.5. If p = q, each GHFpFp(x) is anp-tuple fractional integral or derivative
of the elementary function{xa1−1ex}, namely

pFp(a1, . . . , ap; b1, . . . , bp; x) = 0′x1−a1I
(γk),(δk)

1,p {xa1−1 ex} (3.13)

whereγk = ak − a1, δk = bk − ak, k = 1, . . . , p and0′ =∏p

j=1[0(bj )/0(aj )]. If

bk > ak > 0 k = 1, . . . , p (3.14)

this relation yields the following integral representation:

pFp(a1, . . . , ap; b1, . . . , bq; x) = 0′
∫ 1

0
Gp,0
p,p

[
σ

∣∣∣∣ (bk)p1(ak)
p

1

]
σ−1 exp(xσ ) dσ

= 0′
∫ 1

0
· · ·
(p)

∫ 1

0

p∏
k=1

[
(1− tk)bk−ak−1t

ak−1
k

0(bk − ak)

]
exp(xt1 . . . tp) dt1 . . .dtp. (3.15)

The above theorem justifies separating all the GHFspFp into a class of GHFs of
confluent type, involving the confluent hypergeometric function1F1(a; b; x) = 8(a; b; x)
as a simplest case.

For parameters not satisfying (3.14), relation (3.13) gives differintegral expressions.
For example, we can introduce ‘spherical’ GHFs of confluent type (by analogy with (3.6))
representable by pure differential operators of expx.

Corollary 3.6. Let all the differencesak−bk = ηk, k = 1, . . . , p be non-negative integers.
Then, the (differ) integral operator in (3.13) turns into a differential operatorDη of integer
orderη = η1+ · · · + ηk > 0 and of form (2.9), namely

pFp(b1+ η1, . . . , bp + ηp; b1, . . . , bp; x)
=
[ p∏
j=1

0(bj )

0(bj + ηj )
][ p∏

k=1

ηk∏
j=1

(
x

d

dx
+ bk + j − 1

)]
{expx}

= Qp(x){expx}. (3.16)

The differential representation (3.16) gives an example of how differential formulae for
the ‘spherical’ GHFs introduced in [11] can be used for their explicit calculation, especially
in the casep = q in the formQp(x){expx}, whereQp(x) is a p-degree polynomial. A
special case of (3.16) withbk = ηk = 1, k = 1, . . . , p andQp(x) = (d/dx)(x(d/dx))p can
be seen in [14, p 593].

Third case:p = q + 1

The generalized hypergeometric functionspFq , p = q + 1 are said to be GHFs of Gauss
type (see [11], ch 4) and are considered for|x| < 1. In this case the starting specific result
is the representation of the Gauss hypergeometric function

0(a1)

0(b1)
2F1(a1, a2; b1; x) = I a2−1,b1−a2

1 {(1− x)−a1} = x1−a2I
0,b1−a2
1 {xa2−1(1− x)−a1} (3.17)

for b1 > a2 > 0, or with an E–K fractional derivative ifa1 > b1 > 0.
Since by (q − 1) steps of (3.1) apFq-function reduces to a2F1-function and the

composition of fractional differintegrals in (3.1) and (3.17) gives aq-tuple integral or
derivative, we obtain the third form of proposition 3.1.
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Theorem 3.7. In the unit disk|x| < 1 the GHFs of Gauss typepFq , p = q +1 areq-tuple
generalized fractional differintegrals of elementary functions of the formxα(1−x)β , namely

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; x) = 0′′x1−a2I
(ak+1−1)q1,(bk−ak+1)

q

1
1,q {xa2−1(1− x)−a1} (3.18)

with 0′′ =∏q

j=1[0(bj )/0(aj+1)]. This means that for

bk > ak > 0 k = 1, . . . , m (3.19)

the following Poisson-type integral representations hold:

q+1Fq(±x) = 0′′
∫ 1

0
Gq,0
q,q

[
σ

∣∣∣∣ (bk)(ak+1)

]
σ−1(1∓ xσ)−a1 dσ =

[ q∏
j=1

0(bj )

0(aj+1)0(bj − aj+1)

]
×
∫ 1

0
· · ·
(q)

∫ 1

0

q∏
j=1

[(1− tk)bk−ak+1−1t
ak+1−1
k ] × (1∓ xt1 . . . tq)−a1 dt1 . . .dtq .

(3.20)

The repeated integral form of (3.20) can also be found in [14, p 438].

Corollary 3.8. For q = 1, representation (3.20) coincides with (3.17), and can be written
as the known Euler formula for the Gauss function ([5, vol 1]):

2F1(a1, a2; b1; x) = 0(b1)

0(a2)0(b1− a2)

∫ 1

0

(1− t)b1−a2−1ta2−1

(1− xt)a1
dt (3.21)

valid in |x| < 1.

This formulaproposes a way for an analytical continuation of2F1(x) outside the unit
disk to the domain|arg(1− x)| < π , where the right-hand side of (3.21) represents an
analytical function ofx. For the same reasons,formulae (3.20) can serve as analytical
extensions of the GHFsq+1Fq(x), q > 1 outside|x| < 1.

The case with parameters not satisfying condition (3.19) yields generalized fractional
derivatives in (3.18) and also provides useful corollaries. By analogy with the previous two
cases, we introduce the notion of spherical GHFs of Gauss type when all the differences
ak − bk = ηk, k = 1, . . . , q, are non-negative integers andq+1Fq(x) is representable by a
purely differential operator of a function(1−x)β (a special case can be seen in [14, p 572]).

Another interesting case concerns the so-called hypergeometric polynomials

p+1Fq(−n, a1, . . . , ap; b1, . . . , bq; x) =
n∑
k=0

(−n)k(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!
(3.22)

whenp = q. By taking aq+1 = −n, n > 0-integer andak > bk > 0, k = 1, . . . , q, the
fractional derivative form of (3.18) turns into the Rodrigues-type formula[ q∏
j=1

0(aj )

0(bj )

]
p+1Fq(−n, a1, . . . , aq; b1, . . . , bq; x)

= D(bk−1),(ak−bk)
1,q {(1− x)n} = x1−aqD(bk−aq ),(ak−bk)

1,q {xa1−1(1− x)n}
= x1−bqDaq−bq xap−bq−1Dap−1−bq−1 . . . xa3−b2Da2−b2xa2−b1Da1−b1{xa1−1(1− x)n}.

(3.23)

Special cases of (3.23) yield some classical Rodrigues formulae (for more details see
[1, 15]). For example,p = q = 1 with a1 = n + 1, b1 = 1 andx → (1− x)/2 yields the
Rodrigues formula for the Legendre polynomials,

Pn(x) = (−1)n 2F1

(
−n, n+ 1; 1; 1− x

2

)
= (−1)n

n!

dn

dxn

[
1− xn

2

1+ xn
2

]
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= 1

2nn!

dn

dxn
{(x2− 1)n} (3.24)

andp = q = 2 with a1 = n+ 1, b1 = 1, a2 = ζ , b2 = p (ζ > p > 0) gives the Rodrigues
formula for the Rice polynomials, viz

Rn(x) = 3F2(−n, n+ 1, ζ ; 1, p; x) = 0(p)

n!0(ζ )

[
dn

dxn
x1−p

(
d

dx

)ζ−p]
{xn(1− x)n}. (3.25)

All the results mentioned in this section show that there are, essentially,three kinds of
GHFs pFq , similar in properties and reducible to the three elementary functions (1.7) and
to the three ‘initial’ (simplest) GHFs0F1, 1F1, 2F1. Thus, results for them can be obtained
by the tools of generalized fractional calculus.

4. New results on the Wright’s generalized hypergeometric functionspΨq

In the previous section we have reviewed results on the generalized hypergeometric functions
using fractional differintegrals withG-functions only. Now we show that the same theory
works for theWright’s GHFs p9q(x), p < q, p = q, p = q + 1 with operators and
representations involving the Fox’sH -functions. In this way, we give a solution to the
Open problem E.4, stated in [11].

Although thepFq-functions (1.6) encompass almost all the known special functions of
mathematical physics, there still exist important examples of generalized hypergeometric
functions that could not be included in their scheme and, for arbitrary parameters, are not
Meijer’s G-functions at all. Happily enough, these cases are representable by means of
the Fox’sH -functions ([14, 18, 19]). Let us mention the Mittag–Leffler-type functions ([5,
vol 3; 18; 11, appendix]):

Eρ(x;µ) =
∞∑
k=0

xk

0(µ+ (k/ρ)) = x
ρ(µ+1)H

1,1
1,2

[
−x
∣∣∣∣ (0, 1)
(0, 1), (1− µ, (1/ρ))

]
ρ > 0, µ ∈ C

which have found useful applications as solutions of fractional-order differential and integral
equations (see e.g. Tuan and Al-Saqabi [20]) and in many other problems of analysis. They
reduce toG-functions only for rational values of the parameterρ.

Other examples are thep9q-Wright’s generalized hypergeometric functions (1.8) and
(1.9), generalizing thepFq-functions. Interesting particular cases of them are the so-called
Wright’s generalized Bessel functions ([21])

Jµν (x) := 091[(ν + 1, µ);−x] = H 1,0
0,2 [x|(0, 1), (−ν, µ)] =

∞∑
k=0

(−x)k
0(ν + kµ+ 1)k!

. (4.1)

For µ = 1, (4.1) turns into the Bessel functions. The above functions are also misnamed
as Bessel–Maitland functions, by the second name Maitland of E M Wright [21].

To develop an approach to thep9q-functions, similar to that for thepFq-functions of
section 3, we are to deal with compositions of fractional integrals and derivatives, similar to
the E–K operators (2.14) and (2.15) but involving four instead of three arbitrary parameters.
The generalized fractional integration operators, suitable for our aims, turn to involve as
kernels the Wright’s generalized Bessel functions (4.1) instead of the elementary kernels
(2.13) of (2.14).

Generalizing the operators and results of Kiryakova [11] and Kalla and Kiryakova [8],
in [7] Kalla and Galue have already introduced such operators and their compositions have
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been shown to be representable by single integrals, closely looking like (2.4). However,
their kernelHm,0

m,m-functions involvetwo different groups of positive numbers{βk}m1 and
{λk}m1 in the bottom and top rows of the parameters. Kalla and Galue have also established
properties of these new operators, completely analogous to that of operators (2.4) and (2.10)
mentioned in section 2. Therefore, we give here only the basic definitions and omit the
details.

Definition 4.1. Let β > 0, λ > 0, δ > 0, γ be real parameters. We define the Wright–
Erdélyi–Kober (W–E–K) operators of fractional integration by

W
γ,δ

β,λf (x) := I γ,δβ,λ,1f (x) = λ
∫ 1

0
σλ(γ+1)−1J

−λ/β
γ+δ−λ(γ+1)/β(σ

λ)f (xσ) dσ (4.2)

whereJµν stands for the Wright’s Bessel function (4.1).
If λ = β, (4.2) reduces to the E–K operators (2.14). Forγ > −(µ/λ) − 1, δ > 0,

β > λ > 0, the W–E–K operators are considered in the classesHµ(�), (2.20) with
� = {|x| < R, |arg(1/x)| < (π/2)((1/λ)− (1/β))}.

Definition 4.2. With an integerm > 1 and real parametersβk > 0, λk > 0, δk > 0, γk,
k = 1, . . . , m, we define the multiple W–E–K fractional integrals by

If (x)=I (γk),(δk)(βk),(λk),m
f (x)=



∫ 1

0
Hm,0
m,m

[
σ

∣∣∣∣ (γk + δk + 1− (1/βk), (1/βk))m1
(γk + 1− (1/λk), (1/λk))m1

]
f (xσ) dσ

if
m∑
k=1

δk > 0

f (x) if δk = 0, λk = βk, k = 1, . . . , m.

(4.3)

It is suggested that

γk > − µ
λk
− 1 δk > 0 βk > λk > 0 (4.4)

to ensure that

A =
m∑
k=1

1

λk
−

m∑
k=1

1

βk
> 0

and also to preserve the functional space

Hµ(�) with � =
{
|x| < R,

∣∣∣∣arg
1

x

∣∣∣∣ < π

2
A

}
.

The following two relations, following from [18], (2.2.4) and (2.6.1):

H
1,0
1,1

[
σ

∣∣∣∣ γ + δ + 1− (1/β), (1/β)
γ + 1− (1/β), (1/β)

]
= βG1,0

1,1

[
σβ
∣∣∣∣ γ + δ + 1− (1/β)
γ + 1− (1/β)

]
= βσβ−1 (1− σβ)δ−1

0(δ)
σβγ (4.5)

H
1,0
1,1

[
σ

∣∣∣∣ γ + δ + 1− (1/β), (1/β)
γ + 1− (1/β), (1/β)

]
= λσλ(γ+1−(1/λ))J−λ/βγ+δ−(λ/β)(γ+1)(σ

λ) (4.6)

show that ifβk = λk, then the new ‘multiple W–E–K’ fractional integrals coincide with the
m-tuple E–K operators (2.4).
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Under conditions (4.4), operational rules, similar to (2.22)–(2.30), are satisfied. Symbols
I
(γk),(δk)

(βk),(λk),m
with some of theδk, k = 1, . . . , m, negative are interpreted as multiple W–E–K

fractional derivativesD(γk+δk),(−δk)
(βk),(λk),m

, namely

I
(γk),(δk)

(βk),(λk),m
f (x) =

[ m∏
r=1

ηr∏
j=1

(
1

βr
x

d

dx
+ γr + δr + j − 1

βr

)]
I
(γk),(δk+ηk)
(βk),(λk),m

f (x). (4.7)

By analogy with [11], Kalla and Galue [7] have proved, by mathematical induction, the
decomposition relationship

I
(γk),(δk)

(βk),(λk),m
f (x) =

[ m∏
k=1

W
γk,δk
βk,λk

]
f (x) =

[ m∏
k=1

I
γk,δk
βk,λk,1

]
f (x) (4.8)

justifying the name ‘multiple (m-tuple)’ operators for (4.3).
The basic result established can be stated by the following.

Proposition 4.3. All the Wright’s generalized hypergeometric functionsp9q(x) can be
represented as multiple (q-tuple) W–E–K fractional integrals or derivatives of one of the
three basic functions

cosp−q+1(x) expx 190(x) = H 1,1
1,1 (−x) (4.9)

depending on whetherp < q, p = q, p = q + 1.

Naturally, functions (4.9) generalize the three basic functions (1.7), corresponding to
the case ofpFq-functions and generalized fractional differintegrals involving the simpler
G-functions.

The following lemma is the basis of the results in this section.

Lemma 4.4. Eachp+19q+1-function is representable as a W–E–K fractional integral or
derivative of ap9q-function, namely

p+19q+1

[
(α1, A1), . . . , (αp,Ap), (αp+1, Ap+1)

(β1, B1), . . . , (βq, Bq), (βq+1, Bq+1)

∣∣∣∣x]
= Iαp+1−1,βq+1−αp+1

1/Bq+1,1/Ap+1,1 p9q

[
(α1, A1), . . . , (αp,Ap)

(β1, B1), . . . , (βq, Bq)

∣∣∣∣x] (4.10)

for |x| <∞ (|x| < 1 if p = q + 1).

The proof of the above relation, as well as the proofs of the particular statements
below follow easily by representing all the functions asH -functions and by application
of the key formula for an integral of a product of twoH -functions ([14, 18; 11,
appendix]):∫ ∞

0
xα−1Hs,t

u,v

[
σx

∣∣∣∣ (ci, Ci)u1(dl,Dl)
v
1

]
Hm,n
p,q

[
ωxr

∣∣∣∣ (aj , Aj )p1(bk, Bk)
q

1

]
dx

= σ−αHm+t,n+s
p+v,q+u

[
ω

σr

∣∣∣∣ (aj , Aj )n1, (1− dl − αDl, rDl)
v
1, (aj , Aj )

p

n+1
(bk, Bk)

m
1 , (1− ci − αCi, rCi)u1, (bk, Bk)qm+1

]
. (4.11)

The casesp < q, p = q, p = q + 1 are considered separately, as in section 3.
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First case:p < q

Definition 4.5. By analogy with the hyper-Bessel functions (3.2), we call the GHFs

09m

[
(β1, B1), . . . , (βm, Bm)

∣∣∣∣− x]
= H 1,0

0,m+1

[
x

∣∣∣∣ (0, 1), (1− β1, B1), . . . , (1− βm,Bm)
]

=
∞∑
k=0

xk

0(β1+ kB1) . . . (βm + kBm).k!
(4.12)

Wright’s hyper-Bessel functions. The notation, corresponding to (3.4), (3.2) and (4.1) should
be JB1,...,Bm

β1−1,...,βm−1(−x).
The result, analogous to that provided by the Poisson–Dimovski transformation, now

takes the following form:each Wright’s hyper-Bessel function09q−p can be represented by
means of a Poisson-type integral of thecosp−q+1-function, namely

09m

[
(β1, B1), . . . , (βq−p, βq−p)

∣∣∣∣− x] = I ((k/(q−p+1))−1),(βk−(k/(q−p+1))
(1/Bk),(1),q−p

×{cosq−p+1((q − p + 1)x1/(q−p+1))}. (4.13)

Thus, combining thep-times application of (4.10), the composition/decomposition
property (4.8) and the generalized Poisson integral representation (4.13), we obtain the
following.

Theorem 4.6. Each p9q-function, p < q, is a generalizedq-tuple W–E–K fractional
(differ) integral of cosq−p+1(x), namely

p9q

[
(α1, A1), . . . , (αp,Ap)

(β1, B1), . . . , (βq, Bq)

∣∣∣∣− x] = I (γk),(δk)(1/Bk),(λk),q
{cosq−p+1((q − p + 1)x1/(q−p+1))} (4.14)

with parameters

γk =


k

q − p + 1
− 1

αk−q+p − 1
δk =

βk −
k

q − p + 1

βk − αk−q+p

λk =


1 k = 1, . . . , q − p
1

Ak−q+p
k = q − p + 1, . . . , q.

(4.15)

If the condition

βk >
k

q − p + 1
, k = 1, . . . , q − p βk > ak−q+p > 0, k = q − p + 1, . . . , q

Bk > 1, k = 1, . . . , q − p Bk > Ak−q+p, k = q − p + 1, . . . , q (4.16)

are satisfied, then relation (4.14) gives a Poisson-type integral representation; otherwise the
operator on the right-hand side should be interpreted as a multiple W–E–R derivative (4.7)
and (4.14) turns into a new Rodrigues-type formula.

Theorem 4.6 suggests the name Bessel-type Wright’s GHFs for the functionsp9q with
p < q. The Bessel function and the Wright’s Bessel function are the simplest special
functions of this class.
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Second case:p = q
Applying relation (4.10) to a functionp9p consequently(p − 1) times, one gets to a191-
function which, on the other hand, is representable as a W–E–K operator of expx:

191

[
(α1, A1)

(β1, B1)

∣∣∣∣x] = I1/B1,1/A1,1{expx}. (4.17)

Combining (4.10) and (4.17), we obtain the form of proposition 4.3 in this case.

Theorem 4.7. If p = q, each GHFp9p(x) is an p-tuple W–E–K fractional integral or
derivative of the exponent function, namely

p9p

[
(α1, A1), . . . , (αp,Ap)

(β1, B1), . . . , (βp, Bp)

∣∣∣∣x] = I(1/Bk),(1/Ak),p{expx} (4.18)

provided

βk > αk > 0 and Bk > Ak > 0 k = 1, . . . , p. (4.19)

If for some indicesk the ordinance betweenαk andβk is not as in (4.19), representation
(4.18) turns into differintegral one.

The above result justifies separating all the GHFsp9p into a class of Wright’s GHFs of
confluent type, involving the confluent hypergeometric function1F1(a; b; x) = 8(a; b; x)
as a simplest case.

Third case:p = q + 1

We call theq+19q-functions Wright’s GHFs of Gauss type and consider them for|x| < 1.
The q-times application of (4.10) gives the following proposition.

Theorem 4.8. In the unit disk|x| < 1 each Wright’s GHF of Gauss typep9q , p = q + 1,
is aq-tuple W–E–K fractional differintegral of theH 1,1

1,1 -function, generalizing the binomial
series from theorem 3.7, namely

q+19q

[
(α0, A0), (α1, A1), . . . , (αq, Aq1)

(β1, B1), . . . , (βq, Bq)

∣∣∣∣x] = I(1/Bk),(1/Ak),q { 190

[
(α0, A0)

∣∣∣∣x]}
= I(1/Bk),(1/Ak),q

{
H

1,1
1,1

[
−x
∣∣∣∣ (1− α0, A0)

(0, 1)

]}
(4.20)

under the same conditions (4.19).

When (4.20) is an integral, it generalizes the Euler integral formula (3.21) for the Gauss
function. In particular, forA0 = 1 the basic function in the casep = q + 1 reduces to the
binomial series

190

[
(α0, 1)

∣∣∣∣x] = H 1,1
1,1

[
−x
∣∣∣∣ (1− α0, 1)

(0, 1)

]
= G1,1

1,1

[
−x
∣∣∣∣ 1− α0

0

]
= (1− x)−α0. (4.21)

The technical details, concerning the results of section 4, together with some interesting
particular cases and applications will be given in a separate paper.

The surveyed approach allows, by using the tools of the generalized fractional calculus,
the transfer of the known results for the basic functions (1.7) and (4.9) to the complicated
generalized hypergeometric functionspFq(x) and p9q(x), by separation of the special
functions into three classes of functions with similar properties.

In the physical problems, where these special functions occur, sometimes physicists and
engineers need to dispose with some simple but sufficiently accurate ‘approximations’ of
them. Since, in a sense, the E-K operators and their compositions (i.e. the generalized
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fractional differintegrals) preserve the asymptotic behaviour and other characteristical
properties, one can think for the generalized hypergeometric functions as for objects very
close to the well known elementary functions. Namely, all thepFq- andp9q-functions with
p < q can be imagined as cosq−p+1-functions, thepFp- andp9p-functions can be thought
of as similar to the exponential function and theq+1Fq-, q+19q-functions—as closest to the
functionsxα(1− x)β in the unit disc.
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