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Abstract. In this survey we discuss a unified approach to the generalized hypergeometric
functions based ongeneralized fractional calculudeveloped in the monography by Kiryakova.
This generalization of the classical theory of the operators of integration and differentiation of
fractional order deals with integral (differintegral) operators involvitgijer's G- andFox’s H-
functionsas kernel functions. Their theory is fully developed and illustrated by various special
cases and applications in different areas of the applicable analysis.

Usually, the special functions of mathematical physics are defined by means of power series
representations. However, some alternative representations can be used as their definitions.
Let us mention the well knowiPoisson integralsfor the Bessel functions and the analytical
continuation of the Gauss hypergeometric function viaBhker integral formula TheRodrigues
differential formulag involving repeated or fractional differentiation are also used as definitions
of the classical orthogonal polynomials and their generalizations. As to the other special
functions (most of them beingF,- and , ¥, -functions), such representations are less popular
and even unknown in the general case. There exist various integral and differential formulae, but,
unfortunately, they are quite peculiar for each corresponding special function and scattered in
the literature without any common idea to relate them. Here, algémeralized hypergeometric
functionsare proved to be generalized fractional integrals or derivatives of three basic elementary
functions. On this base, they are classified in three specific classes and several new integral and
differential representations are found.

1. Introduction

The generalized fractional calculus developed in [11] is based on the notigenefalized
operators of fractional integratiorof Riemann—Liouville type

1
If(x) = xaj(; ®(0)o” f(xo)do (1.2)

(see Kalla [6]), wherab (o) is an arbitrary elementary or special kernel function. However,
in order to develop a meaningful detailed theory with practical applications, we choose the
kernel functions as suitable special cases ofMlager's G-functionsandFox’s H-functions

Definition 1.1. (see [14,18]) By aFox's H-function we mean the generalized
hypergeometric function defined by means of the contour integral

(alv Al)v cer (aps Ap)}
(b1, B1), ..., (by, By)
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_ m,n (aj 5 A )]_ 1 m,n
=H, |: by Bk)q =5 H , ()0’ ds oc#0 (1.2)
where the integrand in (1.2) has the form
Hkmzl F(bk — Bys) 1—[;1:1 F(l —aj + AjS)
[Tiensa TA = bi+ Bis) [17_,11 T(aj — Ajs)

and L is a suitable contour if; the orderqm, n; p, ¢) are non-negative integers such that
0<m<gq,0<n<gq;the parameterd;, j =1,...,pandB, k=1,...,q are positive
andaj, j=1,...,p, by, k=1,...,q, are arbitrary complex numbers such that

Aj(b +1) # Bu(aj —I' — 1) 1,/=0,12,....,j=1....,pk=1....q

In particular, when allA; = By = 1, we obtain the so-calleMeijer's G-function[5,

) =

vol 1)),
. (@;. 1) EIChl
H 1,1 ] 1 Gm d 7 1.3
[ (b 1)‘1} [ (bk)q] (-3
namely,
1 T =) T —a; +
Gm,n |:O' ag, ..., al’j| = (}_[k 1 ( k S) 1_[ [J( aj S) O‘S dS. (14)
P-4 bl,...,bq 2| C Hk:m+1r(1 bk+s)1_[ ,H_lr(aj —5)

In section 2 we define our generalized fractional integrals and derivatives using as
kernel functions peculiar cases of the above special functionsmvithp = ¢, n = 0. This
choice of the kernel functionb(c) ensures a decomposition of these operators (called
also multiple ErdElyi-Kober operators into products of commuting classical Eilgi—
Kober (E-K) operators. Thus, complicated multiple integrals or differintegral expressions
can be represented alternatively by means of single integrals involving special functions.
The beauty and succinctness of the notation and properties of these functions allow the
development of a full chain of operational rules, mapping properties and convolutional
structure of the generalized fractional integrals as well as an appropriate explicit definition
of the corresponding generalized derivatives. On the other hand, the frequent appearance
of compositions of classical Riemann-Liouville and &gyd-Kober fractional operators in
various problems of applied analysis gives the key to the great number of applications and
known special cases of our generalized fractional differintegrals.

Section 3 deals with the generalized hypergeometric funcjjdhéx) being also special
cases of the Meijer'&;-functions (see [5, 14]):

x _M L |_y | 1-an....1-qp (1.5)
T P01 by b

Definition 1.2. By ageneralized hypergeometric function (GHf, (x) we mean the sum
of the GHF series

pFylay, ...,ap; b1, ..., by;

. L) — NP D ey o (@) (@) - . . (ap)k x;‘
s i b0 = B 0=, 0
C'(a+k)

where =1, =7 1.6
(@)o (@)k F@) (1.6)
in the domain of its convergence = {|x| < oo} for p < g and Q2 = {|x| < 1} for
p = g + 1, or its analytical continuation ifix| > 1, |arg(1 — x)| < &} in the latter case.
One may consider also as a real variable € [0, c0).
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We separate thgF,-functions into three classes depending on wheghet ¢, p = ¢
or p = g + 1 and represent the functions of each class as generalized fractional integrals or
derivatives of three basic elementary functions:
Cos,_p+1(x) (if p < ¢q) x* expx (if p=q) xX(L=x)P(f p=q+1). (1.7)
The above-mentioned representations lead to several new integral and differential formulae
for the , F,-functions and allow their study in a unified way. Many interesting particular
cases are mentioned.

In section 4 we continue the same approach to the so-called Wright's generalized
hypergeometric functions ([18, 19])

" [(al, A1), ..., (ap, Ap) . x] _ i [(a1+kAy)...T(a, +kAp) x*
P41 (b1, B1), ..., (by, By)’ T(by +kBy)...T(b, +kB,) k!

k=0

_ Lp _ (l—al,Al),...,(l—(lp, Ap)
‘HM“[ *10.1), A= by, By).....(L— b, B)) | (1.8)
Naturally,
(@.1,.... (a0, | _ Tl T®) . .
pqlq[(bl, 1)’.."(bq71)7.x —W[,Fq(al,...,ap,bl,...,bq,x). (19)

The results for the special functions (1.9) are essentially new and are published for the
first time.

2. Generalized fractional calculus

We introduce the following generalizations of the Riemann-Liouville (R-L) fractional
integrals of ordes > O:

8 _ i /x -1 _ i /l o ye-1
R°f(x) = I (x—1)° " f(r)dt = e 1—0)"f(xo)do (2.1)
having the form of operators (1.1).

Definition 2.1. Let m > 1 be integer,8 > 0, y1,...,y, @anddé; > 0,...,8, > 0 be
arbitrary real numbers. By a generalized (multiptetuple) E—K operator of integration of

multiorders = (44, ..., §,,) we mean an integral operator
' (v + 807
15 f ) = / G [o A } f(xo™?) do. (2.2)
’ 0 ’ k)1

Then, each operator of the form
Rf(x) = P18 £ (x) with arbitrary s, > 0 (2.3)

is said to be gyeneralized (m-tuple) operator of fraction integration of R—L typebriefly
a generalized R-L fractional integral

Generalizing further the operators of fractional calculus, in [8,11] we consider also
operators involving Fox'#{ -functions instead of th&-functions in (2.2) and (2.3). They are
named in the same way, hamggneralized (multiple) E-K operators (fractional integrals)

1
m,0 (e + 6 +1—(1/80), (/BT
/ H [" e +1— (1/B0). (/B } f(xo) do
140" @) = if iak ~0 @4
k=1

f(x) i1:812822"'2511120-
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Thus, along with the multiorder of integratiof,,...,3,) and the multiweight
(Y1, -+, Ym), We introduce also a multiparameté$; > O,..., 8, > 0) (different g;’s)
instead of the samg > 0 in the case with kerneal-function. Note that due to the relation

generalizing (1.3),
m,n (al’ 1//3) (Clp, 1/ﬂ) _ m,n B
H,’ [ b1, 1), ... by, 1/;8)} =FG ["

operator (2.4) involving & -function reduces to its simpler form (2.2), viz

for pr=po=---=Bn=p>0 Iy =1, (2.6)

Now let us define generalizations of the classical R—L derivatives of fractional order
8> 0:

(“f')q B >0 (2.5)
1

5
@f(x) = fOx) for integers,
D f(x) = @7

u
@R”"Sf(x) for non-integers with n = [§] + 1

corresponding to generalized fractional integrals (2.2) and (2.4).

Definition 2.2. With the same parameters as in definition 2.1 and the integers

) if 8¢ is integer
nk_{ ¢ ¢ 9 k=1....m (2.8)

[8]+1 if 8¢ is non-integer

we introduce the auxiliary differential operator

D, _[ﬁl‘[( +yr+1)] 2.9)

r=1j=1
Then, the multiplerz-tuple) E-K fractional derivatives of multiordér= (6, > 0, ..., §,,
0) are defined by means of the differintegral operators:

Vi) (8k) Viet81), (e —3k)
Digym fX) = Dyl S

_ m0 e+ +1—(1/80), (/BT
=Dy /0 Hivin [" (i +1— (A/B0). (/B } fxo)do.  (2.10)

In the case (2.5) of equd,’s we obtain simpler representations involving the Meijer's
G-function and corresponding to generalized fractional integrals (2.2):

m

8 8k), (k=4 8%), (i —6k

D,(Syfrz 5 (8%) =D, I(VH- )» (k—8k) |:| | | | ( — 4y + ]> :|[/§V”;1+ K> (e =8k) (2.11)
r=1j=1

WV

More generally, the differintegral operators of the form
Df(x) = D(Vk) .(81) _Sof(x) _ x—SgD(VL (%0/B)), (5k)f(x) with 8o > 0 (2_12)
are called generalized (multiple;-tuple) fractional derivatives.

Generalized derivatives (2.11) and (2.12) are the counterparts of the generalized
fractional integrals (2.2) and (2.3).

The generalized fractional integrals and derivatives include as special cases a great
number of operators of fractional (or integer but generalized) integration and differentiation,
even in the simpler cases related to the MeijgFsunction. We consider separately the
casesn = 1, 2 (when many generalized integration and differentiation operators introduced
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and used by various authors are included as special cases) an#l (when our operators
are less known).
(i) m = 1. The kernel function of (2.2) is the elementary function

— 51,7
Gﬂ[g‘wé}::(l o) %?/TE)  O<o <1

2.13
14 0, o> 1. ( )

Thus, for arbitrary8 > 0, y and$ > 0 the generalized fractional integrals (2.2) coincide
with the well known E—K operators (integrals)

y.8 _ ! 1- (7)871(71/ 1/8 a8
1 f(x)_/o T ® fxo™Pydo =1} f(x) (2.14)
widely used in the applied analysis (see e.g. [17]) and incorporating the R-L fractional
integrals (2.1) as wellR® f (x) = x* 12 f (x).

For m = 1 the generalized fractional derivative (2.10), corresponding to the E-K
fractional integral (2.14), is called in [11] in E-K fractional derivative and has the
representation

D}’ f(x) = Dy f(x) = DIy ™" f(x)

_ n 1 d ) 1 (1_ o_)n—é—lo,y-t,-s s
B [H (ﬁxdx+y+J)]/o F_s o) (2.15)

Symbolically, it can be written as
DY f(x) 1= DA f(x) = [x 7 DOx?* f YA (2.15)
where D? is the R—-L fractional derivative (2.7), being also an E-K derivative:

d 5
D’ = (dx) =x7D;* = pPx 5 > 0.

(i) m = 2. Then, the kernel function of (2.2) is the Gauss hypergeometric function
2F1, namely

2,0 1+ 01,2+ 62
G2’2 [G V2, V2 i|
or2(1— 0-)51+52—1
—_— S F +68—11,81:81+ 8 1—0 foro <1
_ FGL oy 2 1(y2 + 82 — y1,81; 61 + &2 )
0 foro > 1
(2.16)

and the operators;’s"® are the so-called hypergeometric fractional integrals:

1 yz(l _ )51+827l
o2 o
Hf(x) = I(yly)/Z)’(al'aZ)f(X) = / ————————— S Fi(y2 4+ 82 — y1, 61; 61 + 82; 1-o0)
p2 o TG+

x f(xoP) do (2.17)

introduced first by Love [13] and considered in different modifications by Saigo [16].

(i) m > 2. In this case the generalized fractional integrals and derivatives have
been used mainly in their alternative, multiple integral representations, without involving
special kernel functions. This has caused a lack of suitable tools to deal with them
easily.
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In a series of papers (e.g. [3]) Dimovski introduced and studied the hyper-Bessel
differential operators of arbitrary integer order> 1 of the form

B :xao%xal...%xam :x_ﬂ]H-(xdi-f—,Byk) B >0. (2.18)

These operators, generalizing the second-order Bessel differential operator are widely used
in the differential equations of mathematical physics (see [11, ch 3]). Dimovski developed
a detailed theory, including operational calculi, integral transforms, etc. Operators (2.18)
and their linear right inverse operatats the so-called hyper-Bessel integral operators have
been shown in [11] to be generalized-{uple, arbitrarym > 1) fractional derivatives and

integrals of integer multi-ordets; = 1, ..., 5, = 1), namely
. m 0.0 —p _ B Sw-n.@
L = ﬂ7]ﬁ”77 f(.x) B = ‘B Dﬂ,m X = FDﬁ’m . (219)

A variety of useful transmutation operators, related to operators (2.18)—(2.19), such as the
Poisson—-Sonine-Dimovski transforms are also examples-tfple generalized fractional
integrals, for all the details see ch 3 of [11].

The multiple Dzrbashjan—Gelfond—Leontiev operators ([11, section 5.4]), are typical
examples of the more complicated generalized fractional (differ) integrals, (2.4) and (2.10)
involving Fox’s H-functions.

In [11] the generalized operators of fractional integration and differentiation have been
considered in differenfunctional spacessuch as weighted spaces of continuous, Lebesgue
integrable or analytic functions. Here we need the definition of the latter spaces only.

Definition 2.3. Let u be arbitrary real, the variable be real or complex, running
respectively over the interval [@o) or in the domainQ c C, starlike with respect to
the originx = 0, and letH(2) stand for the space of analytic functions¢in Denote

H,(Q) = {f(x) = x* f(x); f(x) € H(Q)} Ho(R) := H(Q).  (2.20)

To study the generalized fractional integrals, we use essentially the theory ¢f-the
and H-functions, appearing as kernel functions of (2.2) and (2.4). To this end we refer
to the classical book [5, ch 5], and also to [14, 18, 19] or [11, appendix]. Note also that
the G- and H-.%-functions have three regular singular poinats= 0,1 and oo, they
vanish for|o| > 1 and are analytic functions in the unit digk| < 1. Their asymptotic
behaviour neas = 0, 1 is already well known (see e.g. [14] or [11, appendix]) and ensures
the correctness of definitions (2.2) and (2.4) in the above spaces under suitable conditions
on the parameters.

Operators (2.4) can be rewritten in the form

: 1/ (e + 8 +1—(1/B1), 1/ BT
0060 _ 7/ gm0 [ Vi + 8k O /BT r
g SO= 0 Jo i ] o+ 1= apo oy |7
and thus this can be put in the form of a convolutional-type integral transform,

048 <X dr
e = [ k() s ke

whereo denotes the Mellin convolution.

Most of the basic results for the operators of the generalized fractional calculus have
been stated in [11] separately for the case§ofnd H-functions and for different kinds of
functional spaces. Here we expose them in the general case (2.4) only. The corresponding
reductions for the simpler case (2.2) withfunctions are easily seen (for proofs and details
see also [9]).

t
X
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Theorem 2.4. Let the conditions

w>-F_1  s>0 k=1...m (2.21)
P
be satisfied. Then, the multiple E-K operator (2.4) maps the dtgs£2) into itself,
preserving the power functions up to constant multipliers:

m F 1
IZ X} = cpx?, p > a wherec, = [ | i+ (p/P0 + 1

. 2.22
i T+ 6+ (p/B) + 1) (2-22)

The image of a power series

) =x"Y ax" =x"(ao+ax +---) € Hu(Ag)  Ag={lx| < R}
n=0

whereR = {lim,_o/la,]} %, is given by the series

70060 _ = { ) o T+ m+w/B+1) } " 223
o S =x Z:O ¢ ,Qr(yk+8k+(n+u)/ﬁk+1) - @A)

having the same radius of convergente- 0 and the same signs of the coefficients.
From the properties of th€- and H-functions some immediate corollaries of definitions
(2.2) and (2.4) follow.

Theorem 2.5. Suppose conditions (2.21) are satisfied. Thert{jn($2) the following basic
operational rules of multiple E—K fractional integrals (2.4) hold:

IGO0 f (ex) + ng(ex)} = AT Fiex) + n{I 7w ghex)  (2.24)

(bilinearity);
(2T o Vstdoeeer V)2 (0,00, 08541, 8m) Fot1omn ) Byt eeerSi)
L " FO) =Ty () (2.25)
(if 81 =82 =--- =8, = 0, then the multiplicity reduces ton — s));
). (5, Py (8
I x f ) = PGP f ) a e R (2.26)

(generalized commutability with power functions);

0.6 @) (@) T @) 7 (7). ()
Tigym' Ly OO =1T¢))," Iigym [ ) (2.27)

(commutability of operators of form (2.4));

0.0 7 @) @) GO DT D)
Ligym iy SO = Ligom ey min fx) (2.28)

(compositions ofr-tuple andn-tuple integrals (2.4) arén + n)-tuple integrals);

+3k), (o ,(8 ,(ox+6 ;
IO f ey = I ) i 8 > 0,00 >0k=1....m  (2.29)

(law of indices, product rule or semigroup property);

UGSy (o) = I (x) (2.30)

formal inversion formula).
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The above inversion formula follows from index law (2.29) fef = -3, < O,
k=1,...,m and definition (2.4) for the zero multiorder of integration, since
1 TG F ) = 1G5 o = f ().
However , symbols (2.4) have not yet been defined for negative multiorders of integration
-8 < 0,k =1,...,m. The problem is to propose an appropriate meaning for them

and hence to avoid the divergent integrals appearing in (2.30). The situation is the same
as in the classical case when the R-L and E—K operators of fractional &rded are
inverted by appealing to an additional differentiation of suitable integer ordefs] + 1.
Now, we make use of the following differential formula for the kerd#glfunction ([11],
lemma 5.1.7 or lemma B.3, appendix, for tBefunction). Letn, > 0,k =1,...,m be

arbitrary integers, then
mo | 1] (ak, /BT mo | ! (ak+77k»1/ﬂk)mi|

gmo| b 1| =p gmo|L 1 2.31

o |:x <bk,1/ﬁk)'f} 1o [x (e, /BT (231)

with the differential operatoD,, being a polynomial ok d/dx of degreen = n1+-- - 4 9y

Dn_]ﬂ[]_[( x+a, 1+j).

r=1;=1

This formula helps to increase the parametgrsk = 1, ..., m, of the H-function in
the upper row by arbitrary integerg > 0,k =1, ..., m, by using a suitable operatay,.
Choosing appropriately the necessary parameters, as in definition 2.2, we can prove now

that D) (2.10) is in fact a generalized fractional derivative with a linear right inverse

(), (81)
operator/ """, namely

DI fx) = f(x)  f € Hu(S). (2.32)

Now we state the basic result for the generalized fractional integrals (2.2) and (2.4)
suggesting their alternative name ‘multiple (m-tuple)’ fractional integrals

Theorem 2.6. (The composition/decomposition theorem.) Under the conditions (2.21), the
classical E—K fractional integrals of the form (2.14%:’5*, k=1,...,m, commute in
H,.(2) and their product

U ) = [H g Jreo

_/ / [ s yk}f( oy opPrydoy.. . do,,  (2.33)
\/-* " (8¢) o S |

can be represented as antuple E—K operator (2.4), i.e. by means of a single integral
involving the H-function:

n ) L (8k
[H I, k]f () = I £ ()
k=1

_ /1 1m0 [0 (O + 8+ 1= (1/B). (1/ o)

mom i+ 1= (1/B0). A/ By }f o)do f €My

(2.34)

Conversely, under the same conditions, each multiple E-K operator of form (2.4) can be
represented as a product (2.33).
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Let us note that the same proposition also holds for the generalized fractional derivatives
(2.10) and (2.11): they are products of E—K derivatives (2.15), namely:

(V). (6k) }/ 3 V s Vi sOm
D(ﬁ;) mA D v 1D 2% Dﬂm . (2.35)

Combining (2.30), (2.32), (2.34) and (2.35), we can make the next step in clarifying
the structure of a great number of operators—generalized or classical, fractional or integer-
order integrations, differentiations or differintegrations. Namely, in [11] we have introduced
a unified theory based on the common notion generalized fractional differintegrals’.
By now, operators/(})""’ with all & > 0, k = ,m, have been considered as
(fractional) integrals while those with al, < O, k = 1 ,m, have been undertaken
as formal denotations for the generalized fractional derlvatives (cf (2.30) and (2.32)):

W80, (=8)  _ 0.6 ), (8) (+00). (=8¢) - iti
Ligym = D), e gy = Dy . Now, having the decomposition

theorem in mind, we may consider both symbafg) "’ and D()' as generalized
fractional differintegrals. If not all of the components of multlorder of ‘differintegration’
8§ = (81,...,68,) are of the same sign, we simply interpret them as ‘mixed’ products
of E-K fractional integrals and derivatives. For example,sif < 0,...,8, < O,
(3S+1 == LSH_]- =0, 6s+j+l >0,...,68, >0, then

I(yk) ((SA) D(V1+81 ..... ¥s+385),(—81,..., —3ds) (Vs+/+l ~~~~~ VI17)5(6A+/+1 ----- 2m)
(Bi)sm (B1.--Bs).s (Bstj+1seesBm) s m—s—j

= 1‘[ Dy ]‘[ I (2.36)

k=s+j+1

is a (m — j)-tuple fractional differintegral.

Theorem 2.6 gives the key to the numerous applications of the generalized fractional
calculus operators. Some of them, especially those relevant to the theory of the special
functions, are briefly mentioned in the next two sections.

3. Representations of the generalized hypergeometric functionsF,

In [10, 11] we have proposed a unified approach to the generalized hypergeometric functions
(1.6) and derived new or newly written integral, differential and differintegral representations
of these special functions by means of the generalized fractional calculus. A suitable
classification of the, F,-functions has also been introduced. The idea is based on the
following simple facts: (i) most of the special functions of mathematical physics are nothing
but modifications of the GHFsF,; (ii) each ,F,-function can be represented as an E-K
fractional differintegral of g,_, F,_s1-function (see (3.1)); (iii) a finite numbegY of steps

(i) leads to one of the basic GHR¥,_, (for ¢ — p = 1, Bessel function); F1 (confluent

HF) and,F; (Gauss HF); (iv) the above three basic GHFs can be considered as fractional
differintegrals of the three elementary functions (1.7), depending on whetkey, p = ¢

or p = g + 1; (v) the compositions of the E-K operators arising in (iii) give generalized
(¢-tuple) fractional integrals or derivatives, according to theorem 2.6. Thus, we obtain the
following general result.

Proposition 3.1. All the generalized hypergeometric functiops, can be considered as
generalized {-tuple) fractional differintegrals (2.2), (2.3), (2.10) and (2.12) of one of the
elementary functions (1.7), depending on whethet ¢, p = ¢, p =g + 1.

To establish the above proposition we need the following basic lemma.
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Lemma 3.2. ([1,12]) Let x| < oo (Jx] < 1 for p = ¢ + 1), then
[C(ay)/ T (b)) pFy(ar, ... ap; b1, ..., by; x)

a,—1,b,—a, .
Il,”1 C M peaFyoa(ag, ..o ap-15 b1, oL by_1; X)) if b, > a,

= b,—1,a,— .
qull ! q{p 1 F, 1(611, sy Apo1; by, ..., bq,]_; x)} if bq < ap.

(3.1)

The three casep < ¢, p =g, p = g + 1 are to be considered separately, the first of
them being more complicated and involving some auxiliary definitions and results.

First case:p < g

Definition 3.3. In [2] Delerue introduced a generalization of the Bessel functign) for
a multi-indexv = (vy, ..., v,), m > 1:
(x/m + 1)V1+---+vm
J(m) — F, 1" — 1)ym+1 3.2
_____ oy () Tt D). Ton +D° (e + D75 —(x/m + 1" (3.2)
referred to as a hyper-Bessel function of order As a special case, the so-called
(generalized) cosine function of ordén + 1) follows,

0 ( 1)kxk(m+l)

_ k " . m+1\) _ B
C0S,11(x) = oFy ((m n 1>1 ;—(x/m+1) ) = ; Gm £ D) (3.3)

generalizing the elementary cosine function £os cos(x), m = 1. For more details on
(3.2) and (3.3), see [11, appendix; 5, vol 3;14].

In [4] Dimovski and Kiryakova proved a generalization of the Poisson integral
representation of the Bessel function

2 (/27
f F v —|—
based on the Poisson—Dimovski transformatlon (see [11, ch 3]). In terms of the generalized

fractional calculusG- and , F,-functions, the generalized Poisson integral can be written
in the modified form ([11], theorem 4.1.1, corollary 4.1.4):

0F (b0} —x) = el " PO D cog, 1 (n + 1)xM D))

:c/ Gmo[ (b0}
0 m,m

wherec = /(m +1)/(27)" [}, T'(b;) and the conditiorb; > k/(m+1),k =1,...,mis
supposed. Otherwise, if some of thgs does not satisfy this condition, the corresponding
component in the generalized fractional differintegral should be considered as an E-K
derivative (2.15) (see [11, theorem 4.1.6]). As an illustratioby if= vy +1 = k/(m+1)—n;

with integersn;, > 0, k = 1, ..., m, then (3.5) turns into a purely differential expression
for the ‘spherical’ hyper-Bessel functions (3.2) ([11, (4.1.42)]), reducible in the masel

to the spherical Bessel functions (see e.g. [12])

Jo(x) = / (1 — 12)"~2 cosxr dr V> —% (3.4)

m } o tcos,41((m + D(xo)""Pydoe  (3.5)
)]

(2x)1+3 dn (cosx
aCETI

Observe now that by steps (3.1), g F,-function, p < ¢ can be reduced to a hyper-
Bessel function, i.e. to gF,_,-function:

Iy 10 = n=012.... (3.6)

X

P F b — i ar—1),(bg—p+x—ag -
pFy(@ls b ) = [H (rq(a'f;])}li,p O o F (B0 ). @7
j=1 !



Fractional differintegrals of elementary functions 5095

This intermediate differintegral relation combined with (3.5) gives the following
particular form of proposition 3.1 in the cage< g.

Theorem 3.4. Each, F,-function, p < ¢ is a generalized-tuple fractional (differ) integral
of cos,_,41(x), namely:

pFalar, ... apiby, ... by —x) = ALY {cos,_41((q — p + DxYa iy (3.8)

with A = /g — p + 1/m)a=P[[T/_1 T b))/ [1{1 T (a)] and parametersy, &:

k k

—_— =1 by — ——— fork=1,...,.9—p
w=4y4—-pr+1 & = g—p+1 (3.9)

Qr—gyp — 1 b — ak—g+p fork=g—p+1,....q
If the conditions

k
by>———,k=1,...,q — by 0,k=1,..., 3.10
k>q_p+1 q—7D g—p+k = Ak > V4 ( )
are satisfied, then relation (3.8) gives a Poisson-type integral representation:
1 q
(bk)k—l

F(al,...,a;bl,...,b;—x)zA/ quo[a it
re g ! o L [ Kk/(q—p+D)IZT, @grp)img pia

xrf‘lcO% pal(q = p+ D(xo)Y 7] do

_ A/ /lq ,,[ — )P Wampr ,(k/(q—p+1>>—1]
0 <q> 0 Ty — (k/(g—p+D)*

—Uk—q 1_1
y [(1—tk)bk gt takﬁ,,l]
k
k=q—p+1 by — ak—q+p)

x €0S,_py1l(q — p + D(xty...1)Y P D]dry .. o, (3.11)

If (3.10) are not true at least for one of the indideghen ;""" in (3.8) is considered as
a generalized fractional derivative.

Relation (3.8), including integral representations (3.5) and (3.11) and their differintegral
analogues, expresses the&,-functions, p < ¢, as fractional differintegrals (integrals or
derivatives) of the generalized cosine function. This fact generalizes the well known
representations like (3.4) and (3.6) of the Bessel function via the cosine and thus, suggests
the nameBessel type GHF$or the functions, F, with p < g. The Bessel function itself is
the simplest special function of thidass

Second casep = g

Applying relation (3.1) to a function, F, consequentlyp — 1) times, we reach aFi-
function which on its side is representable as an E—K operator of the elementary function
x% expx:
a—1b—a :
( ) Ob —a 1 Il ’ {ex} if b>a
Fi(a; b; x) = x* (x7 e} = (3.12)
O pitebigry  if b <a.
Thus, combining (3.1) and (3.12), by steps we obtain the form of proposition 3.1 in

this case.
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Theorem 3.5. If p = ¢, each GHF, F,(x) is an p-tuple fractional integral or derivative
of the elementary functiofx—te*}, namely

pFp(ar, ... ap b1, ... by x) = F'xlf"lll(”/lk,)’(ak){x“rl e’} (3.13)
Whereyk =ay—a1, 5k =by—ar, k=1,...,p andI = jp:]_[r(bj)/r(llj)] If
bk>ak>0 k=1,...,p (314)

this relation yields the following integral representation:

pFplar, ... ap b1, ..., by x) = l"’/ G”0 [ E kil i| o lexp(xo) do
0 1

1 1 p b, —1,a;,—1
A=) 4"y,
=T || exp(xty...t,) diq...dt,. 3.15
/0 (1’)/0 k_1|: (b — az) :| plxty p) 1 14 ( )

The above theorem justifies separating all the GHFs into a class of GHFs of
confluent typginvolving the confluent hypergeometric functiefiy(a; b; x) = ®(a; b; x)
as a simplest case.

For parameters not satisfying (3.14), relation (3.13) gives differintegral expressions.
For example, we can introduce ‘spherical’ GHFs of confluent type (by analogy with (3.6))
representable by pure differential operators of exp

Corollary 3.6. Let all the differences; — by = i, k = 1, ..., p be non-negative integers.
Then, the (differ) integral operator in (3.13) turns into a differential operBipof integer
ordern =1+ --- + n > 0 and of form (2.9), namely

pFp(br 411, ..., by +1p5 b1, ..., by X)

D Nk

LN 11 (G

k=1j=1
= 0, (0){expa). (3.16)

The differential representation (3.16) gives an example of how differential formulae for
the ‘spherical’ GHFs introduced in [11] can be used for their explicit calculation, especially
in the casep = ¢ in the form Q,(x){expx}, where Q,(x) is a p-degree polynomial. A
special case of (3.16) withy =, =1,k =1,..., p and Q,(x) = (d/dx)(x(d/dx))? can
be seen in [14, p 593].

Third case:p=q +1

The generalized hypergeometric functiong,, p = g + 1 are said to be GHFs of Gauss
type (see [11], ch 4) and are considered [fdr< 1. In this case the starting specific result
is the representation of the Gauss hypergeometric function

I'(a1)
T(by1)

2Fi(a1, ag; by; x) = [P0 (1 — x) ™0} = x 170 D0 (x2 711 — x)~1) (3.17)

for by > a»> > 0, or with an E—K fractional derivative if; > b1 > O.

Since by (¢ — 1) steps of (3.1) a,F,-function reduces to aF;-function and the
composition of fractional differintegrals in (3.1) and (3.17) giveg/-tuple integral or
derivative, we obtain the third form of proposition 3.1.
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Theorem 3.7. In the unit disk|x| < 1 the GHFs of Gauss typgF,, p = g + 1 areg-tuple
generalized fractional differintegrals of elementary functions of the ot —x)#, namely

g+1F(an, ... ag41 b1, ... by x) = F”xl_“zIl(if“_l)({’(bk_ak“)z (x2 711 — x)™ 1} (3.18)
with T = []/_4[['(b;)/ T (a;41)]. This means that for

by >a, >0 k=1 ...,m (3.19)
the following Poisson-type integral representations hold:

1
g+1F, (Ex) =T /O Ga9 [a

b ] gy [T L) ]
(Ak+1) :| o (IFxo) o = [H [(aj+ )T (b; — ajy1)

1 1.4
X/ / l‘[[(l_[k)bk*akwlt,fk“‘l] X (LFxty...1,)"dn...dr,.
o @ Jo =1
(3.20)
The repeated integral form of (3.20) can also be found in [14, p 438].
Corollary 3.8. For g = 1, representation (3.20) coincides with (3.17), and can be written
as the known Euler formula for the Gauss function ([5, vol 1]):

I'(b1) /1 a1- p)br—aa—1az—1
I'(ax)T' (b1 — a2) Jo (1— xt)m

2F1(ay, az; by; x) = dr (3.21)

valid in |x| < 1.

This formulaproposes a way for an analytical continuation gf;(x) outside the unit
disk to the domainargl — x)| < =, where the right-hand side of (3.21) represents an
analytical function ofx. For the same reasonfgrmulae (3.20) can serve as analytical
extensions of the GHE5.1F, (x), ¢ > 1 outside|x| < 1.

The case with parameters not satisfying condition (3.19) yields generalized fractional
derivatives in (3.18) and also provides useful corollaries. By analogy with the previous two
cases, we introduce the notion of spherical GHFs of Gauss type when all the differences
ar — by = m, k =1,..., g, are non-negative integers apg F, (x) is representable by a
purely differential operator of a functioil —x)? (a special case can be seen in [14, p 572)).

Another interesting case concerns the so-called hypergeometric polynomials

n

(—n)k(@ - - . (@p)p x*
F(—n,a,...,a;b,...,b;x):E —
pita ! e a L (boi... bk K

when p = ¢. By takinga,11 = —n, n > O-integer andy, > by > 0,k =1,...,¢, the
fractional derivative form of (3.18) turns into the Rodrigues-type formula

[ﬁr(“f)} 1Fy(=n,az, ... az; by, ..., by x)
=PrEN + RAE] L] ) 3 ey )
j=lr(bj) P q q q

(3.22)

_ D&{){;;fl),(akfbk){(l _ )C)n} — xl—aq D;f;_aq)v(ak_bk){xal—l(l B x)n}
— xl—bq Daq—qua/,—bq,;[ Dap,l—bq,;[ . xag—bz Daz—bzxaz—thal—bl {xal—l(l _ x)n}.
(3.23)
Special cases of (3.23) yield some classical Rodrigues formulae (for more details see
[1,15]). For examplep = ¢ =1 witha; =n+1,b; =1 andx — (1 — x)/2 yields the
Rodrigues formula for the Legendre polynomials,
ool dkn

1-— 1—x"1 n
Pn<x>=(—1>"2F1<—n,n+1;1; 2x> [ * “]

2 2
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— dn
T 21l dxn

andp =g =2withay=n+1,b1=1,a,=2¢,by=p (¢ > p > 0) gives the Rodrigues
formula for the Rice polynomials, viz

{(x* = D"} (3.24)

nIT(C) | dxn dx

All the results mentioned in this section show that there are, essentlai®e kinds of
GHFs , F,, similar in properties and reducible to the three elementary functions (1.7) and
to the three ‘initial’ (simplest) GHFgF1, 1 F1, 2F1. Thus, results for them can be obtained
by the tools of generalized fractional calculus.

" {=p
R,(x) = 3F(—n,n+1,¢;1, p;x) = Fp) |: d xir (d> :| {x"(1—x)"}. (3.25)

4. New results on the Wright's generalized hypergeometric functiong ¥,

In the previous section we have reviewed results on the generalized hypergeometric functions
using fractional differintegrals witl&;-functions only. Now we show that the same theory
works for the Wright's GHFs ,¥,(x), p < ¢, p = ¢, p = g + 1 with operators and
representations involving the FoxH-functions. In this way, we give a solution to the
Open problem E.4, stated in [11].

Although the, F,-functions (1.6) encompass almost all the known special functions of
mathematical physics, there still exist important examples of generalized hypergeometric
functions that could not be included in their scheme and, for arbitrary parameters, are not
Meijer's G-functions at all. Happily enough, these cases are representable by means of
the Fox’s H-functions ([14, 18, 19]). Let us mention the Mittag—Leffler-type functions ([5,
vol 3;18; 11, appendix]):

E,(x;p) = i xik — xPutD gLl [_x 0.1 ]
e T (u+ (k/p)) 12 0, 1), X —p, (1/p))

p>0ueC

which have found useful applications as solutions of fractional-order differential and integral
equations (see e.g. Tuan and Al-Sagabi [20]) and in many other problems of analysis. They
reduce toG-functions only for rational values of the parameter

Other examples are thel,-Wright's generalized hypergeometric functions (1.8) and
(1.9), generalizing thg F,-functions. Interesting particular cases of them are the so-called
Wright's generalized Bessel functions ([21])
= (—x)*

JHx) = oWl (v + 1, w); —x] = Hy3[x|(0, 1), (—v, )] =Y

@)
£ T (v + kp + Dk!

For n = 1, (4.1) turns into the Bessel functions. The above functions are also misnamed
as Bessel-Maitland functions, by the second name Maitldriel i Wright [21].

To develop an approach to tha,-functions, similar to that for thg F,-functions of
section 3, we are to deal with compositions of fractional integrals and derivatives, similar to
the E—K operators (2.14) and (2.15) but involving four instead of three arbitrary parameters.
The generalized fractional integration operators, suitable for our aims, turn to involve as
kernels the Wright’'s generalized Bessel functions (4.1) instead of the elementary kernels
(2.13) of (2.14).

Generalizing the operators and results of Kiryakova [11] and Kalla and Kiryakova [8],
in [7] Kalla and Galue have already introduced such operators and their compositions have
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been shown to be representable by single integrals, closely looking like (2.4). However,
their kernelH’”O -functions involvetwo different groups of positive numbefg;}7 and

{Ac}] in the bottom and top rows of the parameters. Kalla and Galue have also established
properties of these new operators, completely analogous to that of operators (2.4) and (2.10)
mentioned in section 2. Therefore, we give here only the basic definitions and omit the
details.

Definition 4.1. Let 8 > 0,2 > 0,8 > 0, y be real parameters. We define the Wright—
Erdéelyi—-Kober (W—E—K) operators of fractional integration by

W f(x) _Igflf(x)_/\/ MDD e @) f(xo) do (4.2)

where J/* stands for the Wright's Bessel function (4.1).

If A = B, (4.2) reduces to the E-K operators (2.14). bots —(u/A) — 1,8 > 0,
B = A > 0, the W-E-K operators are considered in the clagggé), (2.20) with
Q= {lx| <R, Jarg1l/x)| < (7/2)((1/2) — (1/B))}.

Definition 4.2. With an integerm > 1 and real paramete, > 0, A, > 0, & > 0, w4,
k=1, ...,m, we define the multiple W-E—K fractional integrals by

fms[o] o G Jreorae
If () =130 f () = 135>0 (4.3)
f&) if & =0 =puk=1...m.
It is suggested that
”">_xﬁk_1 5 >0  B=a>0 (4.4)

to ensure that

mo1oe
A=Zf Zﬂ*

k=1 k=1

~
~

and also to preserve the functional space

H,(Q) with Q = {|x| <R,

arg~| < T a
< = .
gx 2

The following two relations, following from [18], (2.2.4) and (2.6.1):
HLO H y+8+1-(1/B). (1/5)} _ BGHO [oﬂ‘ y ji+ 1- (1/;3)}

y+1—(1/8),(1/8) —(1/8)
L (1—=ofH)s1
—gop-1 -9 B
= Bo ) o’ (4.5)
+64+1-(1/8), (1
My [G‘ ’ y+1- (1513/;?)(1;/3/)@} Ao MY -&)-Lﬁﬁ(k/ﬂ)(y-!—l)(ak) (4.6)

show that if8; = A;, then the new ‘multiple W—E—K’ fractional integrals coincide with the
m-tuple E-K operators (2.4).
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Under conditions (4.4), operational rules, similar to (2.22)—(2.30), are satisfied. Symbols

13964, with some of thesy, k = 1,..., m, negative are interpreted as multiple W—E—K

; At Ve +6) . (—81)
fractional derivativesD 4 ;) ™, namely

v (L, 1 v
Iy G S () = []_[1_[ <ﬁxdx +y b+ ﬂ> }I;g;;;g;;;vf(xy 4.7)
r=1j=1 r r

By analogy with [11], Kalla and Galue [7] have proved, by mathematical induction, the
decomposition relationship

e = | Tt o =TTt ro @
k=1 k=1
justifying the name ‘multiple z-tuple)’ operators for (4.3).

The basic result established can be stated by the following.

Proposition 4.3. All the Wright's generalized hypergeometric functiopd, (x) can be
represented as multiple;tuple) W—E—K fractional integrals or derivatives of one of the
three basic functions

COS,_411(x) expx 1Wo(x) = Hif(—x) (4.9)

depending on whethey < ¢, p=¢q, p=¢q + 1.

Naturally, functions (4.9) generalize the three basic functions (1.7), corresponding to
the case of, F,-functions and generalized fractional differintegrals involving the simpler
G-functions.

The following lemma is the basis of the results in this section.

Lemma 4.4. Each ,,1W¥, 1-function is representable as a W—E—K fractional integral or
derivative of a,W¥,-function, namely
W, (a1, A1), ..., (alu A[?)7 (aerla Ap+l) X
i T (1317 Bl)7 BRI (qua Bq)a (IBq+ls Bqul)
— apr1—1.Bgr1—api1 W (alv Al)a ey (apv Ap)
1/Bq+1,1/Al7+1,1 b (ﬂl» Bl)9 RN (ﬁl]’ Bq)

x:| (4.10)

for x| <oco (x| <1if p=g+1).

The proof of the above relation, as well as the proofs of the particular statements
below follow easily by representing all the functions Hsfunctions and by application
of the key formula for an integral of a product of twé&-functions ([14,18;11,
appendix]):

(&)
a—1rys,t
/0 x*TTH, [Jx

— —oth+t.n+.v g
=a pt+v.qgtu o

(Cia Ct)ﬁl_ m,n r
@. Dy | o [
(aj,Aj)”,(l—d/ —(XD/,VD/)K, (aj,Aj),fH (4 11)
(bks Bk)l;]_n7 (1 —Ci — aCi, rCi)?_v (bks Bk)q ' .

m+1

(br, Bo)]

(a;, Aj)f} dic

The casey < ¢, p =¢q, p =g + 1 are considered separately, as in section 3.
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First case:p < ¢

Definition 4.5. By analogy with the hyper-Bessel functions (3.2), we call the GHFs

_x}

0¥m [(ﬂl, BD)..... (Bu. Bu)

_ 1,0

= Ho,m+l |:x 0,1),1—B1,B1),..., 01— B, Bm):|
0 k

=2 - (4.12)
= T(B1+kB1)...(Bn +kBy).k!

Wright's hyper-Bessel function3 he notation, corresponding to (3.4), (3.2) and (4.1) should
be Jj, g, -2 (—).

The result, analogous to that provided by the Poisson—-Dimovski transformation, now
takes the following form:each Wright's hyper-Bessel functigw,_,, can be represented by

means of a Poisson-type integral of tes,_,1-function, namely

o o | = [ ®/@=p+D)=D), (B (k/(g=p+1)
" (B1, B1), ..., (,34_[,, .Bq—p) /B0, ).q-p
x{C0§—p+1((q — p + DxM@=PFh)). (4.13)

Thus, combining thep-times application of (4.10), the composition/decomposition
property (4.8) and the generalized Poisson integral representation (4.13), we obtain the
following.

Theorem 4.6. Each ,¥,-function, p < ¢, is a generalized;-tuple W—E—K fractional
(differ) integral of cog_,1(x), namely

N7 |:(O[1, Al), ey (Olp, Ap)
b (ﬂla Bl)""’(ﬂq7Bq)

with parameters

(1/Bi), (h) g

- x} = 1055 o (€08 pa((q — p + DxMOPTY)} (4.14)

kL, ok
n=49—-pr+1 & = g—p+1

Op—qp — 1 Br — dtk—g+p

1 k=1...,9—p
A = 1 (4.15)

k:q—p+1,...,q-
Ak—g+p

If the condition
k

Bi > m:

B, > 1, k=1 ...,9—p Be 2 Ak—gqip . k=qg—p+1,....¢g (4.16)

k=1...,9—p B >ak—gsp>0,k=qg—p+1...,¢q

are satisfied, then relation (4.14) gives a Poisson-type integral representation; otherwise the
operator on the right-hand side should be interpreted as a multiple W—E—R derivative (4.7)
and (4.14) turns into a new Rodrigues-type formula.

Theorem 4.6 suggests the name Bessel-type Wright's GHFs for the fungtignwith
p < q. The Bessel function and the Wright's Bessel function are the simplest special
functions of this class.
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Second casep = ¢

Applying relation (4.10) to a functiop¥, consequently(p — 1) times, one gets to al;-
function which, on the other hand, is representable as a W—E—-K operator of exp

A [22 23 x} = I1/5,.1/a,.1{€XPX}. (4.17)

Combining (4.10) and (4.17), we obtain the form of proposition 4.3 in this case.

Theorem 4.7. If p = g, each GHF,¥,(x) is an p-tuple W-E—K fractional integral or
derivative of the exponent function, namely

(a1, A1), ..., (@), Ap) }
=1 ex 4.18
per [(,31, B1), ..., (Bp, Bp) * /8.(1/ 40 1€XP} ( )
provided
B>, >0 and B, >A;>0 k=1 ...,p. (4.19)

If for some indices the ordinance betwear, and g, is not as in (4.19), representation
(4.18) turns into differintegral one.

The above result justifies separating all the GH®s into a class of Wright's GHFs of
confluent type, involving the confluent hypergeometric functigh(a; b; x) = ®(a; b; x)
as a simplest case.

Third case:p=q¢ +1
We call the,11¥,-functions Wright's GHFs of Gauss type and consider them|£fo< 1.
The g-times application of (4.10) gives the following proposition.

Theorem 4.8. In the unit disk|x| < 1 each Wright's GHF of Gauss typal,, p =g +1,
is ag-tuple W—E—K fractional differintegral of thHﬁ’ll-function, generalizing the binomial
series from theorem 3.7, namely

(0, Ap), (a1, A1), ..., (a4, Ag1) (ao, Ag)
qH%[ i (1031 Bll) l (B4 B:) " x} - I(l/Bk)’(l/A“’q{l%[ o x“
N (1 — @, A )
= I/, (1/A0.q {Hllll [—x‘ (0701) 0 “ (4.20)

under the same conditions (4.19).

When (4.20) is an integral, it generalizes the Euler integral formula (3.21) for the Gauss
function. In particular, forAg = 1 the basic function in the cage= ¢ + 1 reduces to the

binomial series
1¥o [ (o, 1) ‘xi| = Hllll |:—x & (0,()[](_)5 l):| = G%i |:—x 1 an

The technical details, concerning the results of section 4, together with some interesting
particular cases and applications will be given in a separate paper.

The surveyed approach allows, by using the tools of the generalized fractional calculus,
the transfer of the known results for the basic functions (1.7) and (4.9) to the complicated
generalized hypergeometric functiops, (x) and ,¥,(x), by separation of the special
functions into three classes of functions with similar properties.

In the physical problems, where these special functions gcsmmetimes physicists and
engineers need to dispose with some simple but sufficiently accurate ‘approximations’ of
them. Since, in a sense, the E-K operators and their compositions (i.e. the generalized

} =1-x)®.  (4.21)
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fractional differintegrals) preserve the asymptotic behaviour and other characteristical
properties, one can think for the generalized hypergeometric functions as for objects very
close to the well known elementary functions. Namely, all fig- and, ¥,-functions with

p < g can be imagined as ¢ps,;1-functions, the, F,- and , ¥ ,-functions can be thought

of as similar to the exponential function and the F,-, ;41 ¥,-functions—as closest to the
functionsx®(1 — x)# in the unit disc.
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